2.10 Multistage Generalization: The Nested Distance 71
 2.10.1 The Inherited Distance 71
 2.10.2 The Nested Distance ... 74
 2.10.3 The Nested Distance for Trees 79
2.11 Dual Representation of the Nested Distance 88
 2.11.1 Martingale Representation of the Nested Distance ... 91

3 Risk and Utility Functionals ... 95
 3.1 Single-Period Risk and Utility Functionals 95
 3.2 Examples of Risk and Utility Functionals 97
 3.3 Dual Representation of Risk Functionals 103
 3.3.1 Kusuoka’s Representation 103
 3.3.2 The Dual Representation 105
 3.4 An Alternative Description of Distortion Risk Functionals 110
 3.5 The Impact of the Probability Measure on Risk Functionals 114
 3.5.1 Compound Concavity and Convex-Concavity 114
 3.5.2 Continuity with Respect to the Probability Measure 117
 3.6 Conditional Risk Functionals 119
 3.6.1 Properties of Conditional Risk Functionals 122

4 From Data to Models .. 125
 4.1 Approximations of Single-Period Probability Distributions 126
 4.1.1 Approximation Quality of the Monte Carlo Generation Method .. 127
 4.1.2 Quasi-Monte Carlo Approximations 130
 4.1.3 Optimal and Nearly Optimal Single-Period Discretizations .. 132
 4.1.4 The Stochastic Approximation Algorithms for Multidimensional Quantization 142
 4.1.5 Asymptotic Distribution of Optimal Quantizers 145
 4.2 Approximations of Multiperiod Distributions 149
 4.3 Construction of Scenario Trees 154
 4.3.1 Distance Calculation .. 155
 4.3.2 The Construction of Large Trees 157
 4.4 Scenario Tree Reduction ... 163
 4.5 Improvement of Approximating Trees 166
 4.5.1 Improvement of the Probability Measure 167
 4.5.2 Improvement of the Paths 168
 4.6 An Alternative View on Approximations 172

5 Time Consistency .. 175
 5.1 Time Consistency in Stochastic Decision Problems 176
 5.2 Time Consistent Risk Functionals 179
5.3 Time Consistency and Decomposition .. 187
 5.3.1 Composition of Risk Functionals 187
 5.3.2 Multistage Decomposition of Risk Functionals:
The Decomposition Theorem ... 188
5.4 Martingale Formulations of Time Inconsistent
 Stochastic Programs ... 196
 5.4.1 Verification Theorems ... 199
 5.4.2 An Algorithm for Sequential Improvement 202
 5.4.3 Numerical Experiments 203
5.5 Dualization of Nonanticipativity Constraints 205
6 Approximations and Bounds .. 209
 6.1 Two-Stage Problems, and Approximation
 in the Wasserstein Distance 209
 6.2 Approximation in the Nested Distance Sense 211
 6.3 Bounds ... 218
 6.3.1 Lower Bounds by Changing the Probability Measure 219
 6.3.2 Lower Bounds for Replacing the Scenario
 Process by Its Expectation 225
 6.3.3 Bounds for Changing the Filtration 227
 6.3.4 Upper Bounds by Inserting (Sub)Solutions 227
 6.4 Martingale Properties .. 228
7 The Problem of Ambiguity in Stochastic Optimization 229
 7.1 Single- or Two-Stage Models: Wasserstein Balls 234
 7.2 Solution Methods for the Single- or Two-Stage Case 237
 7.3 The Multistage Case .. 238
 7.3.1 A Minimax Theorem .. 241
 7.3.2 Ambiguity Sets Defined by Nested
 Transportation Kernels 245
 7.3.3 Algorithmic Solution 247
 7.4 Example: A Multiperiod Production / Inventory Control
 Problem .. 249
 7.4.1 Mathematical Modeling Summary 251
 7.4.2 Computational Results 252
8 Examples ... 257
 8.1 Thermal Electricity Production 257
 8.2 Hydro Electricity Production 261
 8.3 Budget Management for Risk-Prone Countries 270
A Risk Functionals: Definitions and Notations 275
 A.1 Multiperiod Risk Functionals 279
 A.2 Information Monotonicity 280