Contents

Part I Introduction and Overview

1 Brief History and Overview of Intelligent Optimization Algorithms ... 3
 1.1 Introduction ... 3
 1.2 Brief History of Intelligent Optimization Algorithms 5
 1.3 Classification of Intelligent Algorithms 8
 1.4 Brief Review of Typical Intelligent Optimization Algorithms ... 12
 1.4.1 Review of Evolutionary Learning Algorithms 12
 1.4.2 Review of Neighborhood Search Algorithms 16
 1.4.3 Review of Swarm Intelligence Algorithm 20
 1.5 The Classification of Current Studies on Intelligent Optimization Algorithm 23
 1.5.1 Algorithm Innovation .. 23
 1.5.2 Algorithm Improvement 24
 1.5.3 Algorithm Hybridization 25
 1.5.4 Algorithm Parallelization 26
 1.5.5 Algorithm Application 26
 1.6 Development Trends .. 28
 1.6.1 Intellectualization .. 28
 1.6.2 Service-Oriented ... 29
 1.6.3 Application-Oriented 29
 1.6.4 User-Centric .. 29
 1.7 Summary ... 30
References ... 31
Recent Advances of Intelligent Optimization Algorithm in Manufacturing

2.1 Introduction

2.2 Classification of Optimization Problems in Manufacturing
 2.2.1 Numerical Function Optimization
 2.2.2 Parameter Optimization
 2.2.3 Detection and Classification
 2.2.4 Combinatorial Scheduling
 2.2.5 Multi-disciplinary Optimization
 2.2.6 Summary of the Five Types of Optimization Problems in Manufacturing

2.3 Challenges for Addressing Optimization Problems in Manufacturing
 2.3.1 Balance of Multi-objectives
 2.3.2 Handling of Multi-constraints
 2.3.3 Extraction of Priori Knowledge
 2.3.4 Modeling of Uncertainty and Dynamics
 2.3.5 Transformation of Qualitative and Quantitative Features
 2.3.6 Simplification of Large-Scale Solution Space
 2.3.7 Jumping Out of Local Convergence

2.4 An Overview of Optimization Methods in Manufacturing
 2.4.1 Empirical-Based Method
 2.4.2 Prediction-Based Method
 2.4.3 Simulation-Based Method
 2.4.4 Model-Based Method
 2.4.5 Tool-Based Method
 2.4.6 Advanced-Computing-Technology-Based Method
 2.4.7 Summary of Studies on Solving Methods

2.5 Intelligent Optimization Algorithms for Optimization Problems in Manufacturing

2.6 Challenges of Applying Intelligent Optimization Algorithms in Manufacturing
 2.6.1 Problem Modeling
 2.6.2 Algorithm Selection
 2.6.3 Encoding Scheming
 2.6.4 Operator Designing

2.7 Future Approaches for Manufacturing Optimization

2.8 Future Requirements and Trends of Intelligent Optimization Algorithm in Manufacturing
 2.8.1 Integration
 2.8.2 Configuration
 2.8.3 Parallelization
 2.8.4 Executing as Service
Part II Design and Implementation

3 Dynamic Configuration of Intelligent Optimization Algorithms .. 83

3.1 Concept and Mainframe of DC-IOA ... 83

3.1.1 Mainframe of DC-IOA ... 84

3.1.2 Problem Specification and Construction of Algorithm Library in DC-IOA 85

3.2 Case Study ... 90

3.2.1 Configuration System for DC-IOA ... 90

3.2.2 Case Study of DC-IOA ... 93

3.2.3 Performance Analysis ... 95

3.2.4 Comparison with Traditional Optimal Process .. 102

3.3 Summary ... 103

References ... 104

4 Improvement and Hybridization of Intelligent Optimization Algorithm 107

4.1 Introduction ... 107

4.2 Classification of Improvement ... 109

4.2.1 Improvement in Initial Scheme ... 109

4.2.2 Improvement in Coding Scheme ... 110

4.2.3 Improvement in Operator ... 112

4.2.4 Improvement in Evolutionary Strategy ... 113

4.3 Classification of Hybridization ... 114

4.3.1 Hybridization for Exploration ... 115

4.3.2 Hybridization for Exploitation ... 116

4.3.3 Hybridization for Adaptation ... 117

4.4 Improvement and Hybridization Based on DC-IA .. 118

4.5 Summary ... 124

References ... 124

5 Parallelization of Intelligent Optimization Algorithm ... 127

5.1 Introduction ... 127

5.2 Parallel Implementation Ways for Intelligent Optimization Algorithm 131

5.2.1 Parallel Implementation Based on Multi-core Processor ... 131

5.2.2 Parallel Implementation Based on Computer Cluster ... 132
6.4.3 Effectiveness of Multiple Communities
 While Considering the DISMC Problem 183
6.4.4 Effectiveness of the Catastrophe Operation 184
6.4.5 Efficiency of Using the Binary Heap 184
6.5 Summary ... 187
References ... 187

7 CLPS-GA for Energy-Aware Cloud Service Scheduling 191
7.1 Introduction .. 191
7.2 Related Works 193
7.3 Modeling of Energy-Aware Cloud Service Scheduling
 in Cloud Manufacturing 195
 7.3.1 General Definition 196
 7.3.2 Objective Functions and Optimization Model 198
 7.3.3 Multi-Objective Optimization Model
 for the Resource Scheduling Problem 200
7.4 Cloud Service Scheduling with CLPS-GA 202
 7.4.1 Pareto Solutions for MOO Problems 202
 7.4.2 Traditional Genetic Algorithms
 for MOO Problems 204
 7.4.3 CLPS-GA for Addressing MOO Problems 207
7.5 Experimental Evaluation 211
 7.5.1 Data and Implementation 211
 7.5.2 Experiments and Results 213
 7.5.3 Comparison Between TPCO and MPCO 214
 7.5.4 Improvements Due to the Case Library 217
 7.5.5 Comparison Between CLPS-GA and Other
 Enhanced GAs 218
7.6 Summary ... 221
References ... 222

Part IV Application of Hybrid Intelligent Optimization Algorithms

8 SFB-ACO for Submicron VLSI Routing Optimization
 with Timing Constraints 227
 8.1 Introduction 227
 8.2 Preliminary 231
 8.2.1 Terminology in Steiner Tree 231
 8.2.2 Elmore Delay 232
 8.2.3 Problem Formulation 233
 8.3 SFB-ACO for Addressing MSTRO Problem 237
 8.3.1 ACO for Path Planning with Two Endpoints .. 237
8.3.2 Procedure for Constructing Steiner Tree
Using SFB-ACO ... 239
8.3.3 Constraint-Oriented Feedback in SFB-ACO 241
8.4 Implementation and Results 243
8.4.1 Parameters Selection 243
8.4.2 Improvement of Synergy 244
8.4.3 Effectiveness of Constraint-Oriented Feedback 249
8.5 Summary .. 254
References ... 254

9 A Hybrid RCO for Dual Scheduling of Cloud Service
and Computing Resource in Private Cloud 257
9.1 Introduction .. 257
9.2 Related Works .. 260
9.3 Motivation Example 261
9.4 Problem Description 263
9.4.1 The Modeling of DS-CSCR in Private Cloud 263
9.4.2 Problem Formulation of DS-CSCR in Private Cloud . 267
9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud .. 270
9.5.1 Initialization ... 271
9.5.2 Ranking Selection Operator 271
9.5.3 Individual Chaos Operator 273
9.5.4 Dynamic Heuristic Operator 275
9.5.5 The Complexity of the Proposed Algorithm 277
9.6 Experiments and Discussions 277
9.6.1 Performance of DS-CSCR Compared with Traditional Two-Level Scheduling 280
9.6.2 Searching Capability of RCO for Solving DS-CSCR ... 280
9.6.3 Time Consumption and Stability of RCO for Solving DS-CSCR 283
9.7 Summary .. 285
References ... 286

Part V Application of Parallel Intelligent Optimization Algorithms

10 Computing Resource Allocation with PEADGA 291
10.1 Introduction .. 291
10.2 Related Works .. 294
10.3 Motivation Example of OACR 296
10.4 Description and Formulation of OACR 297
10.4.1 The Structure of OACR ... 298
10.4.2 The Characteristics of CRs in CMfg 300
10.4.3 The Formulation of the OACR Problem 301
10.5 NIA for Addressing OACR ... 308
 10.5.1 Review of GA, ACO and IA 308
 10.5.2 The Configuration OfNIA for the OACR Problem 311
 10.5.3 The Time Complexity of the Proposed Algorithms 314
10.6 Configuration and Parallelization of NIA 316
10.7 Experiments and Discussions 318
 10.7.1 The Design of the Heuristic Information
 in the Intelligent Algorithms 320
 10.7.2 The Comparison of GA, ACO, IA and NDIA
 for Addressing OACR 322
 10.7.3 The Performance of PNIA 326
10.8 Summary ... 328
References .. 329

11 Job Shop Scheduling with FPGA-Based F4SA 333
 11.1 Introduction .. 333
 11.2 Problem Description of Job Shop Scheduling 335
 11.3 Design and Configuration of SA-Based on FPGA 335
 11.3.1 FPGA-Based F4SA Design for JSSP 335
 11.3.2 FPGA-Based Operators of F4SA 339
 11.3.3 Operator Configuration Based on FPGA 344
 11.4 Experiments and Discussions 344
 11.5 Summary ... 346
 References .. 346

Part VI Future Works of Configurable Intelligent
Optimization Algorithm

12 Future Trends and Challenges ... 351
 12.1 Related Works for Configuration of Intelligent
 Optimization Algorithm ... 351
 12.2 Dynamic Configuration for Other Algorithms 353
 12.3 Dynamic Configuration on FPGA 356
 12.4 The Challenges on the Development of Dynamic
 Configuration .. 358
 12.5 Summary ... 359
 References .. 360
Configurable Intelligent Optimization Algorithm
Design and Practice in Manufacturing
Tao, F.; Zhang, L.; Laili, Y.
2015, XIII, 361 p. 115 illus., 105 illus. in color., Hardcover
ISBN: 978-3-319-08839-6