Contents

1 Introduction, Motivation, and Background .. 1
 1.1 Models for Geometric Control Systems: Pros and Cons 2
 1.1.1 Family of Vector Field Models .. 2
 1.1.2 Models with Control as a Parameter 3
 1.1.3 Fibred Manifold Models ... 7
 1.1.4 Differential Inclusion Models .. 8
 1.1.5 The “Behavioural” Approach .. 9
 1.2 An Introduction to Tautological Control Systems 9
 1.2.1 Attributes of a Modelling Framework for Geometric
 Control Systems .. 10
 1.2.2 The “Essentials” of Tautological Control Theory 10
 1.3 An Outline of the Monograph ... 13
 1.4 Notation, Conventions, and Background ... 14
 References .. 17

2 Topologies for Spaces of Vector Fields ... 21
 2.1 An Overview of Locally Convex Topologies
 for Vector Spaces .. 21
 2.1.1 Motivation .. 21
 2.1.2 Families of Seminorms and Topologies
 Defined by These .. 22
 2.2 Seminorms for Locally Convex Spaces of Vector Fields 24
 2.2.1 Fibre Norms for Jet Bundles .. 24
 2.2.2 Seminorms for Spaces of Smooth Vector Fields 26
 2.2.3 Seminorms for Spaces of Finitely Differentiable
 Vector Fields .. 26
 2.2.4 Seminorms for Spaces of Lipschitz Vector Fields 27
 2.2.5 Seminorms for Spaces of Holomorphic Vector Fields 28
 2.2.6 Seminorms for Spaces of Real Analytic Vector Fields 28
 2.2.7 Summary and Notation ... 29
 References .. 30
3 Time-Varying Vector Fields and Control Systems
 3.1 Time-Varying Vector Fields
 3.1.1 Time-Varying Smooth Vector Fields
 3.1.2 Time-Varying Finitely Differentiable and Lipschitz Vector Fields
 3.1.3 Time-Varying Holomorphic Vector Fields
 3.1.4 Time-Varying Real Analytic Vector Fields
 3.1.5 Topological Characterisations of Spaces of Time-Varying Vector Fields
 3.1.6 Mixing Regularity Hypotheses
 3.2 Parameterised Vector Fields
 3.2.1 The Smooth Case
 3.2.2 The Finitely Differentiable or Lipschitz Case
 3.2.3 The Holomorphic Case
 3.2.4 The Real Analytic Case
 3.2.5 Topological Characterisations of Parameterised Vector Fields
 3.2.6 Mixing Regularity Hypotheses
 3.3 Control Systems
 3.3.1 Control Systems with Locally Essentially Bounded Controls
 3.3.2 Control Systems with Locally Integrable Controls
 3.3.3 Differential Inclusions
 References

4 Presheaves and Sheaves of Sets of Vector Fields
 4.1 Definitions and Examples
 4.2 Sheafification
 4.3 The Étalé Space
 4.4 Stalk Topologies
 References

5 Tautological Control Systems: Definitions and Fundamental Properties
 5.1 Tautological Control Systems
 5.2 Open-Loop Systems
 5.3 Trajectories
 5.4 Attributes that can be Given to Tautological Control Systems
 5.5 Trajectory Correspondences with Other Sorts of Control Systems
 5.6 The Category of Tautological Control Systems
 References
Contents ix

6 Étalé Systems .. 97
 6.1 Sheaves of Time-Varying Vector Fields 98
 6.2 An Alternative Description of Local Sections of Sheaves
 of Time-Varying Vector Fields 100
 6.3 Étalé Open-Loop Systems and Open-Loop Subfamilies 104
 6.4 Étalé Trajectories 105
 References ... 106

7 Ongoing and Future Work 107
 7.1 Linearisation ... 107
 7.2 Optimal Control Theory 109
 7.3 Controllability 113
 7.4 Feedback and Stabilisation Theory 115
 7.5 The Category of Tautological Control Systems 116
 References ... 116
Tautological Control Systems
Lewis, A.
2014, XII, 118 p., Softcover
ISBN: 978-3-319-08637-8