1 Introduction to Piezoelectric Accelerometers with Integral Electronics (IEPE) ... 1
 1.1 Principle, Construction, and Block Diagram of IEPE Accelerometers ... 1
 1.2 PE Accelerometer Used Without Electronics and Its Comparison with an IEPE Accelerometer 5
 1.3 Characteristics of IEPE Accelerometers .. 8
 1.3.1 Sensitivity .. 8
 1.3.2 Range or Dynamic Range 9
 1.3.3 Transfer Function and Frequency Response 9
 1.3.4 Resonant Frequency 13
 1.3.5 Temperature Response 13
 1.3.6 Transverse Sensitivity 15
 1.3.7 Amplitude Linearity 15
 1.3.8 Total Harmonic Distortion 15
 1.3.9 DC Output Bias Voltage 16
 1.3.10 Full Scale Output Voltage 16
 1.3.11 Output Impedance 17
 1.3.12 Noise Floor ... 18
 1.3.13 Warm-Up Time 18
 1.3.14 Overload Recovery 19
 1.3.15 Temperature Range 19
 1.3.16 Sinusoidal Vibration Limit 20
 1.3.17 Shock Limit ... 20
 1.3.18 Base Strain Sensitivity 21
 1.3.19 Size and Weight 21
 1.4 Types of IEPE Accelerometers ... 22
 1.4.1 Charge Mode IEPE Accelerometer 22
 1.4.2 Voltage Mode IEPE Accelerometers 29
2 Piezoelectric Transducers Used for Piezoelectric Accelerometers with Integral Electronics 43
 2.1 Function of a PE Transducer in an IEPE Accelerometer 43
 2.2 Transfer Function of a PE Transducer 44
 2.3 Equivalent Electrical Schematic of a PE Transducer and Its Main Electrical Characteristics 45
 2.4 Constructions of the PE Transducers Used in the IEPE Accelerometers 47
 2.4.1 Compression Mode Design 47
 2.4.2 Shear Mode Design 48
 2.4.3 Flexural or Bending Mode Design 50
 2.4.4 Comparison Between Compression, Shear, and Flexural Mode Designs 53
 2.5 Piezoelectric Elements Used in the IEPE Accelerometers 53
 2.5.1 Quartz Piezoelectric Element 53
 2.5.2 Lead Zirconate Titanate Piezoceramic Element 54
 2.5.3 Comparison Between IEPE Sensors Using PZT Piezoceramic and Quartz Sensitive Elements 55
 2.5.4 The Pyroelectric Effect 55
References .. 55

3 Integral Amplifiers Used for IEPE Accelerometers 59
 3.1 Charge Amplifier .. 59
 3.1.1 Configuration of a FET-BJT Charge Amplifier 60
 3.1.2 Configuration of a Charge Amplifier Based on an Op Amp 61
 3.1.3 Performance Characteristics of Charge Amplifiers 63
 3.2 Voltage Amplifier .. 65
 3.2.1 Configurations of the Voltage Amplifiers 66
 3.2.2 Performance Characteristics of a Voltage Amplifier 67
 3.3 Other Performance Characteristics of Charge and Voltage Amplifiers .. 69
 3.3.1 Noise or Noise Floor 69
 3.3.2 DC Output Bias Voltage 70
 3.3.3 Full Scale or Maximum Linear Output Voltage 71
 3.3.4 Gain Stability 71
 3.3.5 Amplitude Linearity and Total Harmonic Distortion ... 71
 3.3.6 Input and Output Impedances 72
 3.3.7 Power Requirements: Voltage Supply and Current Supply .. 72
6 Fundamental Noise Limit of an IEPE Accelerometer

6.1 When and Why Noise of a PE Transducer Should Not Be Neglected

6.2 The PE Transducer’s Noise Sources Description

6.3 Equivalent Electrical Noise Schematic of a PE Transducer

6.4 The PE Transducer’s Mechanical-Thermal Noise

6.5 The PE Transducer’s Electrical-Thermal Noise

6.6 Complete Expression for the Fundamental Noise Limit of an IEPE Accelerometer

6.7 Some Practical Examples

References

7 Noise of an IEPE Accelerometer

7.1 Introduction

7.2 Equivalent Noise Schematic of the IEPE Accelerometer and General Noise Expressions Derivation

7.3 Noise of the FET-Input Amplifier

7.3.1 The FET Thermal Noise e_{nt}

7.3.2 The FET 1/f Noise $e_{n1/f}$

7.3.3 The FET Noise e_{ns} Caused by the Shot Noise Current i_{ns} in the Gate Circuit

7.3.4 Total Noise e_{nFET} Generated by the FET Noise Sources

7.3.5 Thermal Noise Sources e_{nRb} and e_{nR1} Caused by the FET Biasing Resistor R_b and Resistor R_1, Respectively

7.3.6 Total Noise e_{namp} Generated by the FET-Input Amplifier Noise Sources

7.4 Noise of the PE Transducer

7.5 Overall Noise of the IEPE Accelerometer

7.6 Comparison Between Theoretical and Experimental Results

References

8 Ultra-Low-Noise IEPE Seismic Accelerometers

8.1 Introduction

8.2 Configuration of the Designed Accelerometers

8.3 Construction of the Designed Accelerometers

8.4 Characteristics of the Designed Accelerometers

8.5 Key Factors Providing Ultra-Low-Noise in the Designed Accelerometers

8.6 Direct Measurement of the Designed Accelerometer’s Noise

References

9 High-Temperature, Up to 175 °C, Miniature IEPE Accelerometers

9.1 Introduction
9.2 Configuration and Performance Characteristics of the Designed 175 °C Triaxial IEPE Accelerometers Having Sensitivities 100 mV/g and 10 mV/g and Size of 14.8 mm3 153
9.3 Configuration and Performance Characteristics of the Designed 175 °C Triaxial IEPE Accelerometers Having Sensitivities 10, 1, and 0.5 mV/g and Size of 10 mm3 155
9.4 Configuration and Characteristics of the Designed 175 °C, 10 mV/g Triaxial IEPE Accelerometers with Size of 10 mm3 and Comprising 2-Pole Active LPF 158
9.5 Configuration and Characteristics of the Designed 175 °C, 10 mV/g Single Axis IEPE Accelerometers Comprising 2-Pole Active LPF .. 158
9.6 Key Factors Providing High-Temperature Operations in the Designed Accelerometers ... 165
References .. 168
Piezoelectric Accelerometers with Integral Electronics
Levinzon, F.
2015, XV, 169 p. 99 illus., 37 illus. in color., Hardcover
ISBN: 978-3-319-08077-2