Contents

1 Quantum Mechanics: Some Questions 1
 1.1 On Being Principled… At Least on Sundays 1
 1.1.1 The Sins of Quantum Mechanics 5
 1.2 The Two Basic Readings of the Quantum Formalism 9
 1.2.1 The Need for an Interpretation 9
 1.2.2 A Single System, or an Ensemble of Them? 10
 1.3 Is Realism Still Alive? 11
 1.4 What is this Book About? 19
 1.4.1 The Underlying Hypothesis 19
 1.4.2 The System Under Investigation 20

References ... 25

2 The Phenomenological Stochastic Approach: A Short Route to Quantum Mechanics 33
 2.1 Why a Phenomenological Approach to Quantum Mechanics?............................ 33
 2.2 The Stochastic Description of Quantum Mechanics 34
 2.3 Stochastic Quantum Mechanics 36
 2.3.1 Kinematics .. 36
 2.3.2 Spatial Probability Density and Diffusive Velocity 41
 2.3.3 Dynamics .. 43
 2.3.4 Integrating the Equation of Motion 46
 2.3.5 Quantum and Classical Stochastic Processes 49
 2.4 On Schrödinger-Like Equations 51
 2.5 Stochastic Quantum Trajectories 55
 2.5.1 Wavelike Patterns 56
 2.6 Extensions of the Theory, Some Brief Comments, and Assessment 57
 2.6.1 A Summing Up .. 61

References ... 61
3 The Planck Distribution, a Necessary Consequence of the Fluctuating Zero-Point Field

3.1 Thermodynamics of the Harmonic Oscillator
 3.1.1 Unfolding the Zero-Point Energy

3.2 General Thermodynamic Equilibrium Distribution
 3.2.1 Thermal Fluctuations of the Energy
 3.2.2 Some Consequences of the Recurrence Relation

3.3 Planck’s Law from the Thermostatistics of the Harmonic Oscillator
 3.3.1 General Statistical Equilibrium Distribution
 3.3.2 Mean Energy as Function of Temperature; Planck’s Formula

3.4 Planck, Einstein and the Zero-Point Energy
 3.4.1 Comments on Planck’s Original Analysis
 3.4.2 Einstein’s Revolutionary Step
 3.4.3 Disclosing the Zero-Point Field

3.5 Continuous Versus Discrete
 3.5.1 The Partition Function
 3.5.2 The Origin of Discreteness

3.6 A Quantum Statistical Distribution
 3.6.1 Total Energy Fluctuations
 3.6.2 Quantum Fluctuations and Zero-Point Fluctuations
 3.6.3 Comments on the Reality of the Zero-Point Fluctuations

References

4 The Long Journey to the Schrödinger Equation

4.1 Elements of the Dynamics
 4.1.1 The Equation of Motion
 4.1.2 Basic Properties of the Zero-Point Field

4.2 Generalized Fokker-Planck Equation in Phase Space
 4.2.1 Some Important Relations for Average Values

4.3 Transition to Configuration Space
 4.3.1 A Digression: Transition to Momentum Space
 4.3.2 A Hierarchy of Coupled Transfer Equations

4.4 The Schrödinger Equation
 4.4.1 The Radiationless Approximation
 4.4.2 Statistical and Quantum Averages
 4.4.3 Stationary Schrödinger Equation
 4.4.4 Detailed Energy Balance: The Entry Point for Planck’s Constant
 4.4.5 Schrödinger’s i
4.5 Further Insights into the Quantum Description

4.5.1 Fluctuations of the Momentum

4.5.2 Local Velocities: ‘Hidden’ Information Contained in ψ

4.5.3 A Comment on Operator Ordering

4.5.4 Trapped Motions

4.5.5 ‘Schrödinger’ Equation for a Classical System?

4.6 Phase-Space Distribution and the Wigner Function

4.7 What We Have Learned So Far About Quantum Mechanics

References

5 The Road to Heisenberg Quantum Mechanics

5.1 The Same System: A Fresh Approach

5.1.1 Description of the Mechanical Subsystem

5.1.2 Resonant Solutions in the Stationary Regime

5.2 The Principle of Ergodicity

5.2.1 The Chain Rule

5.2.2 Matrix Algebra

5.3 Physical Consequences of the Ergodic Principle

5.3.1 Establishing Contact with Quantum Theory

5.3.2 The Radiationless Approximation

5.3.3 The Canonical Commutator $[\hat{x}, \hat{p}]$

5.4 The Heisenberg Description

5.4.1 Heisenberg Equation, Representations, and Quantum Transitions

5.4.2 The Hilbert-Space Description and State Vectors

5.4.3 Transition to the Schrödinger Equation

5.4.4 The Stochastic Representation

5.5 Concluding Remarks

References

6 Beyond the Schrödinger Equation

6.1 Radiative Corrections. Contact with QED

6.1.1 Radiative Transitions

6.1.2 Breakdown of Energy Balance

6.1.3 Atomic Lifetimes: Einstein’s A and B Coefficients

6.1.4 A More General Equation for the Balance Breakdown

6.1.5 Radiative Corrections to the Energy: The Lamb Shift

6.1.6 External Effects on the Radiative Corrections

References
6.2 The Spin of the Electron 215
 6.2.1 Unravelling the Spin 216
 6.2.2 The Isotropic Harmonic Oscillator 218
 6.2.3 General Derivation of the Electron Spin 221
 6.2.4 Angular Momentum of the Zero-Point Field 224
 6.2.5 Gyromagnetic Factor for the Electron 226
6.3 Concluding Comments 228
References .. 223

7 Disentangling Quantum Entanglement 237
 7.1 The Two-Particle System 238
 7.1.1 The Field in the Vicinity of the Particles 238
 7.1.2 Looking for Stationary Solutions 240
 7.1.3 The Common Random Variable 242
 7.1.4 Establishing Contact with the Tensor Product
 Hilbert Space 244
 7.1.5 Implications of Ergodicity for the Common
 Random Field Variable 246
 7.2 Correlations Due to Common Resonance Modes 248
 7.2.1 Spectral Decomposition 248
 7.2.2 State Expansion Versus Energy Expansion 250
 7.2.3 State Vectors: Emergence of Entanglement 250
 7.2.4 Entanglement as a Vestige of the ZPF 252
 7.2.5 Emergence of Correlations 253
 7.3 Systems of Identical Particles 256
 7.3.1 Natural Entanglement 256
 7.3.2 The Origin of Totally (Anti)symmetric States 257
 7.3.3 Comments on Particle Exchange 258
 7.4 Spin-Symmetry Relations 259
 7.4.1 Two Electrons in the Singlet State 260
 7.4.2 The Helium Atom 261
 7.5 Final Comments ... 263
References .. 264

8 Causality, Nonlocality, and Entanglement in Quantum
 Mechanics ... 267
 8.1 Causality at Stake 267
 8.1.1 Von Neumann’s Theorem 268
 8.1.2 Bohm’s Counterexample 270
 8.2 Essentials of the de Broglie-Bohm Theory 272
 8.2.1 The Guiding Field 272
 8.2.2 Quantum Trajectories 275
 8.2.3 The Measurement Task in the Pilot Theory 280
8.3 The Quantum Potential .. 282
 8.3.1 Linearity and Nonlocality 283
 8.3.2 Linearity and Fluctuations 285
 8.3.3 The Quantum Potential as a Kinetic Term 287
8.4 Nonlocality in Bipartite Systems 290
 8.4.1 Nonlocality and Entanglement 293
 8.4.2 Momentum Correlations 296
 8.4.3 The Whole and the Parts 298
 8.4.4 Nonlocality and Noncommutativity 299
8.5 Final Remarks ... 303
References ... 304

9 The Zero-Point Field Waves (and) Matter 309
 9.1 Genesis of de Broglie’s Wave 310
 9.1.1 The de Broglie ‘Clock’ 311
 9.1.2 Energy, Frequency and Matter Waves 313
 9.1.3 The de Broglie Wave 315
 9.2 An Exercise on Quantization à la de Broglie 317
 9.3 Undulatory Properties of Matter 320
 9.4 Cosmological Origin of Planck’s Constant 323
References ... 329

10 Quantum Mechanics: Some Answers 331
 10.1 The Genetic Gist of the Zero-Point Field 331
 10.1.1 Origin of Quantization 334
 10.1.2 Recovering Realistic Images 335
 10.2 Some Answers .. 336
 10.3 The Photon .. 338
 10.4 Limitations and Extensions of the Theory 341
References ... 344

Suggested Literature .. 347

Index .. 355
The Emerging Quantum
The Physics Behind Quantum Mechanics
de la Pena, L.; Cetto, A.M.; Valdes-Hernandez, A.
2015, XIII, 366 p. 9 illus., Hardcover
ISBN: 978-3-319-07892-2