Chapter 2
Some Useful Constructions

Almost every protocol described in this book takes advantage of some, or all of the following three basic strategies of utilizing a PRF \(h() \): (a) hash chains; (b) hash trees, which are also referred to as binary hash chains; and (c) the uniqueness of random subsets of large sets generated using PRF \(h() \).

2.1 Hash Chains

A hash chain is [9] constructed through successive applications of the PRF \(h() \) on a bit-string \(X_0 \).

For example, let

\[
X_1 = h(X_0), X_2 = h(X_1), X_3 = h(X_2) \ldots, X_n = h(X_{n-1}).
\]

(2.1)

Such \(n \) successive applications that result in the value \(X_n \) can be conveniently represented by the notation

\[
X_n = h^n(X_0).
\]

(2.2)

From the properties of a PRF \(h() \) it follows that given a value \(X_i \) from a hash chain, it is

1. Easy to compute \(X_j \), if \(j \geq i \), through \(j - i \) applications of \(h() \)
2. Infeasible to compute \(X_j \), if \(j < i \)

Furthermore, given two values \(U \) and \(V \) satisfying \(h^i(U) = V \), even while there exists numerous values \(U' \) satisfying \(h^i(U') = V \), it is safe to conclude that \(V \) was indeed generated by repeatedly hashing \(U \).

Even while the input and output to \(h() \) appear to have the same size (\(u \)-bits), it should be assumed that the input is padded with \(l \) fixed pad-bits to size \(l + u \).
2.1.1 Hash Accumulator

Given a list of values \(v_1 \cdots v_n \), a hash accumulator computes an accumulated hash \(\alpha \) as follows.

\[
\begin{align*}
\alpha_2 &= h(v_1 \parallel v_2) \\
\alpha_3 &= h(\alpha_2 \parallel v_3) \\
\alpha_4 &= h(\alpha_3 \parallel v_4) \\
& \vdots \\
\alpha &= h(\alpha_{n-1} \parallel v_n)
\end{align*}
\] (2.3)

Each step in the accumulation of the hash is also referred to as hash-extension. For example, in the operation \(h(\alpha_2 \parallel v_3) \), “\(\alpha_2 \) is hash-extended with \(v_3 \).”

The accumulated hash can be seen as a commitment to all values \(v_1 \cdots v_n \). Specifically, even while there are numerous possible sets of values which yield the same accumulated value \(\alpha \), given \(\alpha \) and the values \(v_1 \cdots v_n \), one can conclude that \(\alpha \) was indeed computed by accumulating values \(v_1 \cdots v_n \).

2.1.2 Hash Tree

A more common strategy for accumulating a set of values \(v_1 \cdots v_n \) into a single commitment \(\alpha \) is by arranging values \(v_1 \cdots v_n \) as leaves of a binary hash tree. The binary hash tree is more commonly referred to as a Merkle tree [10]. For simplicity, we shall assume that \(n \) is a power of 2.

Figure 2.1 depicts a Merkle tree with \(N = 16 \) leaves \(v_0 \cdots v_f \). A binary tree with \(N \) leaf-nodes has \(2N - 1 \) nodes spread over \(\log_2 N + 1 \) levels—levels \(0 \cdots L = \log_2 N \).
At level 0 are the \(N \) leaf-nodes \(v_0 \cdots v_f \). At level 1 are \(N/2 \) nodes, each obtained by hashing together two adjacent nodes in level 0. In the figure, the eight nodes \(v_{01}, v_{23}, \ldots v_{ef} \) in level 1 are obtained as

\[
\begin{align*}
v_{01} &= h(v_0 \parallel v_1) \\
v_{23} &= h(v_2 \parallel v_3) \\
& \vdots \\
v_{ef} &= h(v_e \parallel v_f)
\end{align*}
\]

(2.4)

Similarly, the four nodes at level 2 are each obtained by hashing together two adjacent nodes in level 1. For example,

\[
v_{03} = h(v_{01} \parallel v_{23}).
\]

(2.5)

Note that a tree with \(N = 2^L \) leaves at level 0 has \(2^{L-i} \) nodes in level \(i \), where \(i = 0 \cdots L \). The total number of nodes in the tree is thus

\[
\sum_{i=0}^{L} 2^{L-i} = 2^{L+1} - 1 = 2N - 1
\]

(2.6)

The lone node at the top of the (inverted) tree is the root of the tree. The root is a compact commitment to all nodes.

Every node has a sibling. \(v_6 \) and \(v_7 \) are siblings (with a common parent \(v_{67} \)); likewise, \(v_{86} \) and \(v_{ef} \) are siblings (with a common parent \(v_{8f} \)). Corresponding to any node at level 0 are \(L - 1 \) direct ancestors. For example, the ancestors of node \(v_6 \) are \(v_{67}, v_{47}, v_{07}, \) and \(\alpha \) — one in each level \(1 \cdots L \). The root \(\alpha \) is a common ancestor for all nodes.

Corresponding to every node in level 0 are \(L \) complementary nodes—one in each level \(0 \cdots L - 1 \). The \(L = 4 \) complementary nodes of \(v_6 \) are \(v_7, v_{45}, v_{03}, \) and \(v_{8f} \). Note that the complementary nodes of any node includes

1. The sibling of the node
2. The siblings of all ancestors

Together, the nodes complementary to \(v_6 \) can be interpreted as a commitment to all nodes except \(v_6 \). \(v_{8f} \) is a commitment to eight nodes \(v_8 \cdots v_f \); \(v_{03} \) is a commitment to four nodes \(v_0 \cdots v_3 \); \(v_{45} \) is a commitment to \(v_4 \) and \(v_5 \); and \(v_7 \) is a commitment to itself.

Any node in the tree (except the root) is either a right child or a left child of its parent. For example \(v_7 \) is a right child of its parent \(v_{67} \); \(v_{45} \) is a left child of its parent \(v_{47} \). Thus, every node can be associated with an additional bit—say 0 if it is a right-child and 1 if it is a left-child left.

The \(L \) complementary nodes of \(v_6 \) along with their orientations, viz.,

\[
\{(v_7, 0), (v_{45}, 1), (v_{03}, 1), (v_{8f}, 0)\}
\]
readily provide step by step instructions for mapping leaf v_6 to the root, through a sequence of L PRF operations. For example, following the instructions, we can compute the root α starting from v_6 as

$$v_{67} = h(v_6 \parallel v_7) \quad v_{47} = h(v_{45} \parallel v_{67})$$
$$v_{07} = h(v_{03} \parallel v_{47}) \quad \alpha = h(v_{07} \parallel v_{8f})$$

Note that the orientation bit specifies the ordering of two nodes before hashing them together to compute the parent node. As v_7 is a right-child (orientation 0) it has to be placed to the right of v_6 before hashing. Similarly, as v_{45} is a left-child, it has to be placed to the left before hashing.

Also note that the four orientation bits 0, 1, 1, 0 of the complementary nodes of v_6 (v_7, v_{45}, v_{03} and v_{8f} respectively) can be readily obtained from the bits used to represent the index of v_6 in binary format (index $6 = 0110_b$). As a second example, the complementary nodes of v_8 are

1. Sibling v_9 which is a right-child (orientation 0)
2. Sibling v_89 of ancestor v_{ab} (orientation 0)
3. Sibling v_{cf} of ancestor v_{8b} (orientation 0)
4. Sibling v_{07} of ancestor v_{8f} (orientation 1)

Once again note that the binary representation of the index $8 = 1000_b$ provides the necessary orientation bits (read from LSB to MSB).

Thus, given any leaf-node v at level 0, it’s index i (where $0 \leq i \leq N - 1$), and the set of its L complementary nodes $c = \{0, \ldots, c_{L-1}\}$, we can define a simple function

$$\alpha = f_{bt}(v, i, c) \quad (2.7)$$

that maps v to the root α. The function $f_{bt}()$ can be algorithmically represented as follows:

\[
\begin{align*}
\alpha &= f_{bt}(v, i, \{c_0, c_1, \ldots, c_{L-1}\}) \\
& \quad \text{FOR } (j = 0 \ldots L - 1) \\
& \quad \quad \text{IF } (i \text{ IS EVEN}) \quad v \leftarrow h(v \parallel c_j); \\
& \quad \quad \quad \text{ELSE } \quad v \leftarrow h(c_j \parallel v); \\
& \quad \quad \quad i \leftarrow i >> 1; \quad \text{//right shift by one bit} \\
& \quad \quad \text{RETURN } v;
\end{align*}
\]

As the PRF $h()$ is preimage resistant, it is infeasible to determine alternate values $\tilde{v} \neq v$, and $\tilde{c} \neq c$ that will satisfy $f_{bt}(v, \tilde{c}) = \alpha$.

In applications that employ Merkle trees the root α of the tree is stored in a trusted location. The other $N - 2$ values can be stored in an untrusted location. If values v, c received from an untrusted source satisfy $f_{bt}(v, \tilde{c}) = \alpha$, the verifier is convinced of the integrity of such values. More specifically, the verifier is convinced that values v and c were indeed used in the construction of the tree with root α.
2.2 Random Subsets

Several symmetric cryptographic protocols of interest to us in this book are based on the idea of allocation of random subsets of keys [11] from the pool of keys.

Consider a key-pool with P keys $K_1 \cdots K_P$. Let $S_1 \cdots S_N$ represent subsets of $k < P$ keys chosen randomly from the key pool.

Let $k/P = a < 1$. One strategy to choose subset of k keys on an average from a pool of P keys is by picking each key from the pool with probability $a = k/P$. Alternately, if it is desired that each subset should have exactly k keys, the pool of P keys may be divided into k sub-pools, each with P/k keys; from each of the P/k pools one key is picked randomly.

When the key pool and subsets are generated using a PRF $h()$ the generator could start with a single master key μ to generate the pool keys as

$$K_i = h(\mu \parallel i), q \leq i \leq P.$$ \hspace{1cm} (2.8)

Any subset may be associated with a seed which determines the indexes of the keys chosen to be a part of the subset. For example, for a subset associated with a seed X, a random stream of bits generated from repeated application of $h()$ on X, for example, X_1, X_2, \ldots generated as

$$X_1 = h(X), X_2 = h(X_2) \cdots$$ \hspace{1cm} (2.9)

can be used to identify the indexes to be assigned to the subset.

Assume that n subsets are picked randomly. Let us represent by S^n the super set of n such subsets. In addition, we randomly choose two other subsets S_i and S_j.

Now, two specific questions of interest to us are

1. What is the probability p that all keys contained in a subset S_i is contained in S^n?
 a) For a given n, p, what is the minimum value of the pool size P?
2. What is the probability that all keys in the intersection of S_i and S_j is contained in S^n?
 a) For a given n, p, what is the minimum value of the pool size P?
 b) For a given n, p, what is the minimum value of the subset size k?

2.2.1 $S_i \subset S^n$

Consider a specific key in the subset S_i. The probability that the same key is found in specific subset that was chosen to create S^n is a. The probability that the specific key is not found in any of the subsets in S^n is

$$\epsilon = (1 - a)^n$$ \hspace{1cm} (2.10)
Thus, the probability that a specific key in the subset S_i is included in the union of n subsets $(1 - \epsilon)$. Consequently, the probability that all k keys in S_i are included in the union of n subsets is

$$p(n) = (1 - \epsilon)^k = (1 - (1 - a)^n)^k \approx (1 - e^{-an})^P$$ \hspace{1cm} (2.11)$$

Obviously, p increases with n. It is often of interest to us to achieve a target $p(n)$ using the least amount of keys. To derive an expression for P, Eq. (2.11) can be rewritten as

$$P = \frac{n \log p}{an \log (1 - e^{-an})} = \frac{n \log (1/p)}{-an \log (1 - e^{-an})}$$ \hspace{1cm} (2.12)$$

For a desired $p(n)$ (i.e., if we fix p and n), the pool size P is minimized when the denominator $(-an \log (1 - e^{-an}))$ is maximized, which occurs when $an = \log 2$. Corresponding to the choice of $a = \frac{\log 2}{n}$ the maximum value of the denominator is $(\log (1/2))^2 = (\log 2)^2$, and consequently the optimal values of P and k are

$$P = \frac{n \log (1/p)}{(\log 2)^2}$$
$$k = \frac{\log (1/p)}{(\log 2)^2}$$ \hspace{1cm} (2.13)$$

As a numerical example, if we desire $p(n = 1000) = e^{-23} \approx 1 \times 10^{-10}$ (probability of 1 in 10 billion), we choose $a = \frac{\log 2}{1000}$, and

$$P = \frac{1000 \times 23}{\log (2)^2} \approx 47870$$
$$k = Pa = \frac{23}{\log 2} \approx 33.$$ \hspace{1cm} (2.14)$$

In other words, if random subsets each with 33 keys are randomly chosen from a pool of 47870 keys, the probability that the union of 1000 randomly chosen subsets will contain all keys in yet another randomly chosen subset, is about 1 in 10 billion.

2.2.2 $(S_i \cap S_j) \subseteq S^n$

Consider a specific key in the pool of P keys. The probability that the key is present in both subsets S_i and S_j, and therefore, in $S_i \cap S_j$, is a^2. The probability that the key is present in the intersection, but not present in the union S^n is

$$\epsilon = a^2(1 - a)^n.$$ \hspace{1cm} (2.15)$$
Thus, for any of the P keys, the probability that a key is present in the intersection of two sets, and in the union of n sets is $1 - \epsilon$. The probability that all keys present in the intersection are present in the S^n is therefore

$$ p = (1 - \epsilon)^P = (1 - a^2(1 - a)^n)^P \approx (1 - a(1 - a)^n)^k. $$

(2.16)

In other words

$$ P = \frac{\log p}{\log (1 - a^2(1 - a)^n)} $$

(2.17)

$$ k = \frac{\log p}{\log (1 - a(1 - a)^n)} $$

(2.18)

From Eq. (2.18), it can be easily seen that for a given n, p, the number of keys in each subset, k, is minimized when $a(1 - a)^n$ is maximized, which occurs when $a = 1/(n + 1)$. The maximum value of $a(1 - a)^n$ is then

$$ \frac{1}{n + 1} \left(1 - \frac{1}{n + 1}\right)^n = \frac{1}{1 - 1/(n + 1)} \left(1 - \frac{1}{n + 1}\right)^{n+1} \approx \frac{1}{en} $$

(2.19)

Thus, for the optimal choice of $a = 1/(n + 1)$,

$$ p(n) = (1 - \frac{1}{en})^k \approx e^{-k/en} $$

(2.20)

The minimal value k and the corresponding pool size $P = k/a$ are then

$$ k = en \log (1/p) $$

$$ P = en(n + 1) \log (1/p) $$

(2.21)

As a numerical example, if we desire $p(n = 1000) \approx e^{-23}$, we can choose $k = 84974$ and $P = 42487073$.

On the other hand, if we desire to minimize the key pool size P, from Eq. (2.18) we can see that it is required to maximize $a^2(1 - a)^n$. This occurs for the choice of $a = 2/n$, corresponding to which the maximum value of $a^2(1 - a)^n$ is

$$ \frac{4}{n^2} \left(1 - \frac{2}{n}\right)^n \approx \frac{4}{n^2} \frac{1}{n^2 e^2} = \frac{4}{n^2 e^2}. $$

(2.22)

As

$$ p(n) = (1 - a^2(1 - a)^n)^P = (1 - \frac{4}{n^2 e^2})^P = e^{\frac{4P}{n^2 e^2}}, $$

(2.23)

we have

$$ P = \frac{n^2 e^2}{4} \log (1/p) $$

$$ k = Pa = \frac{ne^2}{2} \log (1/p) $$

(2.24)

As a numerical example, if we desire $p(n = 1000) \approx e^{-23}$, we can choose $P = 42487073$ and $k = 84974$.