The Scientific Revolution of the 17th Century

With the formation of a new Protestant court in England under James I, it was there that a great revolution in science took hold and began to flourish. Led by Francis Bacon (1561–1626), an administrator in the court of Elizabeth and then James I, his vigorous denunciation of the dead hand of the medieval past which had fostered such beliefs that a purposive nature had created material changes in corals and marine fossils through an innate mystical force of “stone-forming essences” began the complete revision of knowledge.

The main problem natural historians faced was that throughout the medieval millennium, many of the classical Greek manuscripts had either disappeared or been destroyed by zealous Christians intent on obliterating pagan culture. Fortunately, Aristotle’s surviving writings, like so much of the corpus classicum, had become transmitted in Latin translations, many in Arabic versions in the era of Muslim high civilization, 8th to 13th centuries, and then retranslated into Latin and finally back to Greek, although often in faulty versions by barely literate scribes in the monastic scriptoria. Probably the most extreme example was the fate of De plantis which went from Greek to Latin to Arabic, then back to Latin by an incompetent translator, and finally again to Greek. To this day, we have only a limited idea of exactly what Aristotle wrote or actually intended in his study “On Plants”.

Bacon was intolerant of the continued acceptance of debased Aristotelian teachings that had been transmitted uncritically for nearly two thousand years. “The entire fabric of human reason”, he began in the Prooemium to his outline sketch in the “Great Instauration”, a manifesto for reform, “is badly put together and built up, like some magnificent structure without any foundation”. It was essential, he wrote, “to try the whole thing anew on a better plan, and to commence a total reconstruction of sciences, arts, and all human knowledge, raised upon the proper foundations”. In 1605, he published the first part of that project under the title “The Advancement of Learning”.

All knowledge, he argued, comes primarily from experience of the sensible external world, echoing a fundamental Aristotelian doctrine. To that time, Christianity had been mainly influenced by the Neoplatonic view propounded by St Augustine in the 5th century that all human knowledge begins with divine illumination of ideas implanted by God. By the 12th century, however, in the furious debates that raged in the early foundation years of medieval universities, the Dominican monk Thomas Aquinas created an ecclesiastical frenzy with his assertion, following Aristotle, that despite the creation of the world by an omnipotent God, nothing exists in the mind that had not come first through the senses: nihil est in intellectu quod non prius fuerit in sensu. So incensed was the Catholic Church that on his death, Aquinas was buried in unconsecrated ground, although 50 years later in 1323 after the debates of the Scholastic Controversy had been resolved and his views became acceptable, he was rehabilitated. Miracles were attributed to him; he was canonized as St Thomas and named one of the great foundation fathers of the Church.

Following that Thomist precedent, Bacon continued his pressure for reform in 1620 with the publication of further stringent criticisms of existing natural history in De augmentatis scientiarum (The Enrichment of Knowledge). His revolutionary proposal was to replace the corrupted tradition that relied heavily on dialectical reasoning rather than field study, with his new instrument for achieving certainty, Novum Organum, which he set out clearly in the subtitle as “True Directions concerning the Interpretation of Nature”. A fresh start was urgent, a renovation of all existing knowledge, and he advocated new methods of intensive observation, experiment, and the careful, wide-scale collection of data. In his various works, the doctrine of inductive scientific method, later called empiricism (Gk empeiria, “experience”), was introduced which codified a methodology of investigation that began to challenge a 2000-year tradition of reliance on authority.

After Bacon’s dramatic declaration in 1605 to discard the “false idols” of the past and to begin a complete renovation of knowledge, two complementary themes of reef investigation

1 Aquinas: Quaestiones disputatae, De veritate, q. 2, argument 19.
emerged as the revolution gathered pace. Initially, how were the necessary geological structures formed that allow corals to become established? Then, following closely, what exactly are the biological processes underlying the development of what is essentially a veneer of living organisms—plant and animal—that collectively build the ecosystems known as coral reefs? The biological quest soon became as equally absorbing a scientific pursuit as the geological problem. The history of coral science, in fact, has proceeded in a fascinating counterpoint as the two issues interacted, each discovery casting light on the other.

At that time too, a new concept also began to appear when science (from the present participle stem of the Latin scire, “to know”) began to replace natural history, with a totally different emphasis. Bacon continued to use the term “natural history”, although he regarded it as the preliminary stage of collecting facts and recording the events themselves: he reserved the term “science” for the more probing, experimental investigation of nature. Bacon’s call for a renovation of knowledge, despite church condemnation, continued to spread, and it began to be pursued with the increasing foundation of learned societies. The lead had already been taken in 1601 when, under the patronage of Prince Federigo Cesi in Rome with the support of the humanist scholar Nicolas-Claude Fabri de Peiresc and scientist Galileo Galilei, a group formed Europe’s first scientific society which met under the name Accademia dei Lincei, literally “Academy of the Lynx-Eyed”. With the name suggesting a penetrating observation of nature, it made some of the first uses of the microscope, possibly devised by Galileo based on his invention of the telescope, and in 1625, the Academy published a study of the honeybee, the world’s first microscopic report, in its Proceedings, Gesta Lynceorum.

New vistas of the universe that had been initiated in the Renaissance from the astronomical work of Copernicus and Galileo, and the incredibly dynamic impact of Bacon’s uncompromising manifesto began to stimulate scientific enquiry continent-wide that was extended rapidly by the new medium of the printing press. Scholars across Europe came together to form radically different investigation societies, and their reports of experiments and investigations multiplied and were disseminated ever more rapidly. Reef science in particular was swept up in those new developments.

Two particular centres in Paris became major distribution outlets for publications, founded sometime around 1610 when two brothers, Pierre and Jacques Dupuy, formed a small group to meet in their home, which evolved into the Cabinet des Frères Dupuy, significantly, with a portrait of Francis Bacon the centrepiece. The other was in the cell of the Minimist friar Marin Mersenne in the Couvent de l’Annonciade in Paris, and it was to those early editors that papers were sent and disseminated throughout Western Europe in the early decades of the scientific revolution (Bowen (1981, III: p. 46 f.).

In 1630, a similar society was founded in Florence under the patronage of the Medici which called itself the Accademia del Cimento (Academy of Experimentation), with the motto Provando et riprovando (Test and test again), their proceedings being published in the Saggi di naturali Esperienze (Reports of Experiments in Natural History). Then, in 1633, came the papal condemnation and house arrest of Galileo for his heretical claim that the earth revolved around the sun. The repressive hand of the Inquisition, which monitored all scientific investigation closely, forced the closure of the scientific societies in Italy, confirming the popular jest of the time that Italy could lead the world in science whenever the Inquisition would let it.

Of the large number of scientific societies that appeared in the mid- to late 17th century, three became pre-eminent, all in operation to the present day. The first was the Collegium Naturae Curiosorum (Society for the Investigation of Nature), founded in 1652 by a group of physicians in the German city of Schweinfurt, some 115 km east of Frankfurt, followed by the Royal Society of London, founded in 1660 and chartered by Charles II in 1662, quite explicitly, on Baconian principles. The third, a French equivalent, arose slightly later, founded by Chief Minister Colbert in 1666 as the Académie des Sciences, which built upon the work of earlier French societies. Through those organizations, and others that followed in Denmark, Holland and Italy in particular, the new spirit of Baconian-inductive empiricism became dominant, and it was the consequent burst of activity on so many fronts that gathered momentum and created an ever-growing ferment of ideas in natural history.

Following the foundation of those societies, a number of journals soon appeared, originally independently financed, expressly designed to disseminate the increasing volume of scientific findings. The first came in January 1665 when Denis de Sallo of the French parliament founded the Journal des Scavans, followed in March the same year in London by the Philosophical Transactions; Italian, Danish, Dutch and German journals then appeared between 1668 and 1682. In the late 18th century, the Philosophical Transactions became formally linked to the Royal Society of London, and in 1903 the Journal des Scavans received official government sponsorship under the Institut de France.

New Directions: Earth Processes and Natural Causes

Meantime, throughout the 16th and 17th centuries, as mining progressed and men dug more deeply into the surface of the earth, marine remains, now termed fossils (Lat. fossilis, from
Strata eventually gave way and became “either perpendicular or underground fire”, he continued, the superimposed subterranean water erosion and disturbance from volcanoes sedimentary beds, although, when the first layer was formed, been covered by water-borne sediments that formed layers of the earth. Steno considered the theory of the interaction of natural pressures within the solid earth in which he attributed the energizing force to volcanic activity. Volcanoes, clearly related to the natural pressures operating within the earth, were particularly threatening phenomena, carrying a mass of superstition. The first major historical account is in the *Timaeus* by Plato, c. 340 BC. In a battle between Athenians and Atlanteans, the conflict ended abruptly during a period of violent earthquakes and floods when, in a single horrendous day and night, all the warriors were swallowed up by the earth, and the island of Atlantis similarly disappeared beneath the sea: *e te Atlantis nesos osautos kata tes thalattes dusa efanisthe.* That legend, believed to have been based on the destruction of the Minoan civilization on Crete as a result of the volcanic explosion of the nearby island of Santorini, perhaps around 1500 BC, became a central feature of all volcanic knowledge thereafter.

Accounts recorded subsequently were historically accurate. Several have become folklore: the explosion of Vesuvius in 79 AD, in which Pliny died from asphyxiation aboard his yacht in the Bay of Naples in a foolhardy endeavour to observe its activity at close range; and the subsequent eruption of Etna on the eastern coast of Sicily in 353. The eruption of Hekla in Iceland in 1104 received powerful religious sanction when it was authoritatively declared by the resident Benedictine monks that its fiery crater was the portal to Hell itself. As the New World became progressively explored, so accounts came in from the Caribbean Antilles, the Dutch East Indies and the Pacific Ocean. By 1650, Varenius, considered to be the founder of modern geography, published *Nautili* (Hooke 1665, pp. 107–112). On the contrary, he argued, they were the empty shells of once living animals—“Nautili or Porcelain shells;…shells of Cockles, Muscles, Periwinkles, Scollops, &c. of various sorts”—which “came to be thrown to that place… by some Deluge, Inundation, Earthquake…

3 *Timaeus* 25 D.
there to be fill’d with some kind of Mudd or Clay, or petrify-
ing Water” and not by means of “some extraordinary Plas-
tick virtue latent in the Earth itself” (Hooke 1665, p. 110).
Petrified marine objects, he argued, were comparable with
the remains found in classical civilizations, declaring that
“shells are the medals, urns, or monuments of nature…dis-
coverable to any unbiased person” that would afford more
information about the past than “all the pyramids, obelisks,
mummies, hieroglyphs and coins provide to archaeologists”.
The only limitation, he added, was that in the present state
of knowledge “it is very difficult to read them, and to raise a
Chronology out of them, and to state the intervals of the times
wherein such catastrophies and mutations have happened”.4

Hooke’s investigations with the microscope led him to
speculate at the same time on the broad geological features
of the earth, particularly the action of volcanoes, earthquakes
and other surface movements of the crust. Over a 30-year
period, he developed those ideas into a series of lectures and
discourses for the Royal Society, mainly in the two years
1668 and 1669, and which, following his death in 1703,
were collected and edited by Richard Waller and published
in 1705 by the Royal Society under the title Lectures and
Discourses of Earthquakes and Subterranean Eruptions.

Hooke’s “Discourses” were equally controversial. Earth-
quakes and volcanic action, he argued, were not events ex-
pressing some mysterious divine wrath, with the lava fore-
boding the fury of Hell, but a major natural phenomenon
resulting from the spontaneous combustion of sulphur, py-
rite (iron sulphide, FeS₂), air and salt water—because most
volcanoes then known were either in the sea or along coast-
lines—which subsequently created uplift and modelled the
landscape. His approach consequently marks one of the most
significant changes in our understanding of the formation of
coral reefs, when the speculations of earlier naturalists were
consolidated into a firm theory that paved the way for system-
atic, rational scientific investigation. Just as he had explained
the petrification process in fossils, so Hooke proposed the
manner by which sedimentary strata became consolidated,
and that “every part hath, at some time or other, been shaken,
overturned, or some way subject to earthquakes, and been
transformed by them. It seems to me”, he argued, “very ab-
surd to conclude, that from the beginning things have contin-
ued in the same state that we now find them” (Hooke 1705,
p. 450). Those conclusions were a remarkable advance in
geological thinking.

Perhaps even greater evidence of Hooke’s inductive ge-
nius was the observation that many of the fossils being un-
earthed in England were also coming from tropical regions:
perhaps other scientists, he suggested, would consider that
“this very land of England…did at a certain time for some

A Flowering of the Intellect: The European
Enlightenment

The intellectual temper of northern Europe was rapidly mov-
ing into a new phase. The manifesto of Francis Bacon in
1620—De augmentatis scientiarum—for a repudiation of
the heavy hand of medieval tradition and in its place a complete
renovation of knowledge, along with the formation of scien-
tific societies, despite their closure in Italy by the Inquisition,
marked the beginning of a new spirit of scientific enquiry. Al-
though the authority of the various religious confessions was
still intimidating, demanding belief in a universe constantly
under the direct guidance of a transcendent God—a doctrine
known as Theism—thereby encouraging supplication during
voleanic eruptions and other catastrophes for miraculous in-
tervention, scientific thought was beginning, nonetheless, to
take firm hold. Initiated in large part by the quest to solve
the coral reef enigma, it had begun to exercise a pervasive
influence, particularly evident in the growing acceptance of
earthly processes as resulting from natural causes.

4 Hooke (1705, pp. 335, 431). Published posthumously two years after
his death in 1703.

5 Current geological knowledge places England at 35°N in the Triassic
period, c. 251–206 million years ago (Mya).
A defiant stand was taken in 1687 when Isaac Newton (1642–1727) presented his wide range of investigations in one of the most influential books yet published, *Philosophiae naturalis principia mathematica* (Mathematical principles underlying nature). Although it drew from the ancient philosophies of Pythagoras and Plato by asserting that the universe originated from a divine mathematical design, once created, he argued, its daily operations follow fundamental physical and mechanical laws. With the powerful stimulus of Newton’s *Principia* asserting the primacy of natural processes, and an increasingly frequent denial by philosophers of the direct activity of God in daily events, scientific thought came to reflect an alternative, rational approach known as Deism. A neologism created in 1678 by Ralph Cudworth, Deism was developed extensively by John Toland (1670–1722), an Irish convert to Protestantism, who attempted to relate the evidence of natural history and scientific discovery to issues of faith. Strongly influenced by the “Ethics” of Benedict Spinoza of 1670 in which God and nature were presented as an entity, expressed in the intriguing double entendre Deus sive natura (God is Nature, and Nature is God)⁶ to describe that new conception, Toland introduced a new term into the religious lexicon to define that indissoluble unity: Pantheism. Toland’s numerous writings initiated a great wave of radical thought that swept throughout northern Europe, Britain and the American colonies for the following century and began the movement known as Natural Theology, which became especially popular in England.

The Deist position was argued even more forcefully by John Locke (1622–1704) in his challenging *Essay Concerning Human Understanding*, c. 1690, where he rejected the conventional theological view of St Augustine, derived originally from Plato and steadfastly maintained down through the centuries, that our ability to reason and reach valid knowledge depends on ideas implanted by God at birth (*a priori*). Adopting a more radical position than Aquinas and presenting it in a school-room metaphor, Locke asserted that at birth the mind is a blank tablet (*tabula rasa*) and that all human knowledge is written on it throughout life by experience (*a posteriori*). Then, going further, in his 1695 treatise *Reasonableness of Christianity*, he also argued that earthly operations occur solely according to natural laws. Science, for Locke, had to be based entirely on human observation and reasoning inductively from data obtained empirically. Even more radically, he wrote, from that viewpoint it becomes impossible even to speak of divine processes because they are, by definition, beyond empirical confirmation. Committed believers, in significant contrast, were compelled to remain subject to the coercive power of ecclesiastical institutions, especially in Catholic countries where the Congregation for the Doctrine of Faith, the dreaded “Hammer of Heretics” (*Malleus malefactorum*) founded around 1230 and known generally as the Inquisition, continued to be repressive.

Deism developed ever more strongly as the 18th century progressed, and it rapidly spread to France where demands for freedom from ecclesiastical authority and for independence of thought were stimulated by the writings of Voltaire, Rousseau and the *Encyclopédistes*, in particular those by Denis Diderot and the political philosopher Montesquieu. Believing themselves to be particularly enlightened, their writings began the intellectual movement of the Enlightenment, known in France as l’*Éclairissement*, and in Germany as die *Aufklärung*, where Christian Wolff and Immanuel Kant were the major influences.

In Britain, some of the greatest British radical thinkers achieved equal prominence, including economists Adam Smith and Jeremy Bentham, historian Edward Gibbon and scientist Joseph Priestly. It was in Edinburgh, in particular, then Europe’s leading intellectual centre, and known as “Athens of the North”, where it burgeoned into a brilliant flowering of the intellect. During the aptly named “Scottish Enlightenment”, its greatest luminary, David Hume (1711–1776), achieved fame for a number of highly provocative, challenging philosophical works, continuing the pattern created by Locke.

Considered by many the finest philosopher ever to write in English, the leading thrust of Hume’s thought was to reject all metaphysical constructions, and to assert the principle of skepticism as the fundamental framework within which scientific inquiry must proceed, based on reasoning solely from observable, natural causes (Hume 1748). Direct knowledge of God, the *via negativa* or apophatic approach of mystics, Hume asserted, is “altogether incomprehensible and unknown to us”: our idea of God can only come from observation of “effects that resemble each other” created by the “Author of Nature”. Only “by this argument *a posteriori*, and by this argument alone”, he asserted, “do we prove the existence of a Deity” (Hume 1779, pp. 700–701). Even causes as such were rejected by Hume who pointed out that causes can never be observed: they are inferences drawn from analysis of a sequence of events. Although he accepted an original Author of Nature, in his view science was the patient investigation of phenomena, gained solely from a multitude of observations through our senses, and the inferences drawn by the association of ideas and valid logical reasoning. Such inferences, he asserted, constitute the totality of all human knowledge. Even more significant was Hume’s assertion that nothing is ever completely predictable because so-called scientific truths are constantly overturned as new discoveries, based on observations, continue to be made.

The philosophical position of Hume marked a turning point where Theism and the belief that all creation came according to a Divine Design were becoming forced into apologetic and defensive responses. Henceforth, neither

⁶ Literally, God or Nature.
the Inquisition nor the bishops of Copenhagen could direct scientific inquiry along theological channels: geology was to become uncompromisingly Newtonian in approach and many scientists began to use only physical and material concepts to report their discoveries, which became apparent in the continuing geological quest to understand the origin and formation of coral reefs. The impact on subsequent scientific endeavour was to be enormous, e.g. the puzzle of explaining the origin of the extensive relict coral reefs in the French Jura Mountains.

Rational Science and Earthly Operations: Neptunists and Plutonists

Throughout those years of the scientific revolution, the geological issues raised by Steno and Hooke continued unabated, and they reached a climactic phase with the conflict between conservative professors of mining practices and scientists attempting to understand earth processes as natural phenomena. The quest of the empirical scientists was to establish a valid body of evidence to challenge the traditional belief that the rocky earth had developed from precipitation of chemicals within the primeval waters of Divine Creation and in some mysterious way had assumed its modern appearance.

Mining professors were naturally resistant to emerging ideas: their craft had a venerable history reaching back to the Bronze Age 5000 years earlier when ores were first mined, smelted and fashioned into an increasing range of artefacts. As the earth is composed mainly of inorganic crystalline chemical elements and compounds, collectively termed minerals, within which reside a smaller range of elements and compounds with workable qualities of malleability and ductility, known as metals, the mining quest was to discover those places with sufficient concentrations of metallic ores to justify economic extraction. By the time of Agricola in the 16th century, when he presented a remarkable scheme of classification of metals in his 1545 treatise *De re metallica*, along, as mentioned previously, with a short section on corals, mining had become a highly developed occupation with a considerable body of practical knowledge. By the 18th century, schools of mines in Europe, particularly in Germany and Hungary, had become well established, and their approach was to enable students to identify various strata based on qualitative criteria of mineral and metal content, now even more important for the increasing needs from his limited field experience in Saxony and adjacent mountains) of 1787, in which he classified strata according to their mineral content. In those works, Werner taught that the interior of the earth is cold and that volcanoes are caused by the underground combustion of coal; they are, in effect, mere epiphenomena on the earth’s crust that make no significant contribution to its structure and had not existed at the time of original creation.

Beginnings of Dissent: The Influence of Volcanoes

Werner’s teachings, however, became increasingly challenged as a considerable body of evidence became coordinated into an alternative theory of earth formation, centring on the role of volcanoes, and expressing doubt that basalt, granite and similar hard rocks had been consolidated from underwater precipitation. Werner, though, had generalized from his limited field experience in Saxony and adjacent Hesse, where all of the accessible basalt lay in elevated strata on the top of hills. Beyond, in the valleys of the appropriately named Massif Central in the French Auvergne, lay the great basaltic formations of the Chaîne des Puys (Chain of Peaks) west of Clermont-Ferrand, of which he had no knowledge. Several decades earlier in 1752, in a *Mémoire* to the Académie Royale des Sciences, entitled *Sur quelques Montagnes de France qui ont été volcani*, Jean Etienne Guettard reported...
that his study of a number of former volcanoes in France revealed they had been formed by subterranean activity.

Basaltic rocks were central to the entire issue of geology then. One of the most abundant minerals on earth, the growing controversy and heated conflict with Werner arose from the latter’s insistence that basalt, the hardest rock on the planet—first named “basalts” by Pliny from the Greek basanos, the touchstone against which gold and silver could be tested for purity by their streak, and known popularly as “whinstone”—came from precipitation in the primeval waters of Creation. Yet its chemical composition, dominated by iron, manganese and calcium, from the tests available at the time and confirmed by numerous observations, gave clear indication that it had been formed by fusion at great heat. In search of evidence, for nearly 30 years, between 1766 and 1794, the British ambassador to the Court of Naples, Sir William Hamilton, an enthusiastic student of volcanoes, had made more than 60 expeditions up Vesuvius to observe it erupting and to collect specimens. In the same period, in 1771 Nicolaus Desmaret continued investigations into the Chaîne des Puys and from his observations, and the collections of lava made by Hamilton at Vesuvius, established that basalt and lava are the same mineral: he reported it as so in his Mémoire sur l’Origine et la nature du basalte à grandes colonnes polygones (Memoir on the nature and origin of the great basalt columns).

Providing further confirmation were the findings of Peter Pallas (1741–1811), a German in the service of Catherine the Great in the Academy of St Petersburg whose research, in both Europe and Russia, came to advance coral reef studies considerably. In his major work published in Paris in 1782, Observations sur la formation des montagnes, et les changemens arrivés à notre globe (Observations on the formation of mountains and the changes effected in the world), he invoked both fire and water as the forces of change, writing that “The operations of volcanoes have continued in different places, especially in the vicinity and at the bottom of the seas up to our own day. It is by their agency that new islands have been seen to rise from the depths of the ocean; it is probably they which raised all those enormous calcareous Alps, formerly coral rocks and beds of shells, such as are still found today in the seas which foster these productions” (Pallas 1782, p. 76). Of great significance in that statement of Pallas is the comment “up to our own day”, a theme that rests implicitly in all investigations into the formation of strata. Despite the attempted forcing of science into a restrictive theological mould, it had become clear to all investigators that formative influences were continuing to operate. What remained to be determined were the relative contributions of catastrophes, chiefly volcanic activity and devastating atmospheric events such as cyclones and tsunamis (Japanese, “harbour waves”), and the unseen, mostly subliminal operation of forces deep within the earth.

By the final decade of the 18th century, the debate over earth formation had become seriously polarized. Werner’s followers, from their adherence to Biblical doctrine and steadfast belief in post-diluvial rock formation from precipitation, were dismissed by their critics as Neptunists (after Neptunus, the Roman god of water), whereas those who were convinced that the earth’s formative processes came mainly from volcanic action were in turn labelled Vulcanists (after Vulcanus, the Roman fire god). Later, with a deliberate sneer, they were derided by their arch opponent, the chemist and fundamentalist Anglican, Richard Kirwan, President of the Royal Irish Academy, as Plutonists (Pluton, the Greek god of Hades). Actually, the latter was a more accurate description, and became the accepted term. For nearly 50 years, from the final decades of the 18th century through the first three of the 19th, the debate continued, often with great intensity, with one crucial element yet to be discovered: the time required to create the earth’s rocks and then to model the landscape.

A Radical Theory: Inner Pressure and Geological Processes

Throughout those decades, it was commonly believed that the earth was but 6000 years old. That figure had been calculated by Anglican Archbishop James Ussher of Armagh in Northern Ireland, who, from evidence within the scriptures, determined that Creation had taken place during Saturday afternoon on 10 October 4004 BC. Over four years, 1650–1654, he published his findings in the Annales veteris et novi testamenti (Historical records of the Old and New Testaments) and from 1701 the dates he assigned for each biblical event were inserted in the left margin of printed Bibles that were becoming ever more widely distributed as literacy spread. Yet clearly, at least for Plutonists, the figure was far too small. On 7 March 1785 came the greatest challenge to Biblical authority so far: on that day, the first half of a four-part Dissertation on the System of the Earth, its Duration and Stability by James Hutton was read to a meeting of the Royal Society of Edinburgh, followed by the second half a month later. That lengthy paper, more than 35,000 words, changed geological thinking forever.

A Scottish gentleman farmer, James Hutton (1726–1797) was an active member of the intellectual circles in Edinburgh that founded the Philosophical Society in 1738 which subsequently evolved into the Royal Society of Edinburgh in 1783. Hutton was on close terms with some of the leading Enlightenment thinkers of the city, especially philosopher David Hume, economist and professor of moral philosophy Adam Smith, engineer James Watt, professor of chemistry Joseph Black and his younger assistant James Hall. That particular group formed a small coterie—the Oyster Club—
which met periodically over a convivial supper to discuss
the great issues of the day, of which geology was a major
element, especially the debate developing between Neptu-

On 7 March 1785, Joseph Black read the first part of a
dissertation by Hutton to a meeting of the Royal Society of
Edinburgh entitled a _Theory of the Earth; or an Investigation
of the Laws Observable in the Composition, Dissolution, and
Restoration of Land upon the Globe_. In that paper, Hutton
set out to show, by a steady, methodical presentation of em-
pirical evidence, that the Neptunian theory was untenable,
and that earth processes could only be explained in terms
of subterranean heat and fusion. Modelling of the landscape
consequently came from catastrophic subterranean activity
in which volcanoes were not mere epiphenomena as Werner
taught, but general to the globe, and they acted as “spiracles
to the subterranean furnace in order to prevent the unnec-
essary elevation of the land, and the fatal effects of earth-
quakes”, thereby contributing to the formation of convoluted
and twisted strata (Hutton 1788, pp. 238–239). In fine Hu-
mean fashion, Hutton inferred, from the visible evidence of
ongoing processes of surface activity such as natural decay,
soil formation, erosion, sedimentation, etc., there had neces-
sarily been “an immense time required for this destruction
of the land”.

Warming to his central theme, and the evidence of “the
relics of sea-animals of every kind in the solid body of our
earth” and their orderly deposition, it was essential to put
aside the Mosaic theory with its bare 6000-year time frame,
which allowed the “beginning of man at no great distance”,
and clearly lacked congruence with visible evidence. Hut-
ton’s sustained argument was based on the abundance of
“immense masses, which…appear to have been formed by
the calcareous _exuviae_ of marine animals”. At the top of the
Alps, as well as the Andes, shells and corals have been found
that must have “been originally formed at the bottom of
the sea”. The vast calcareous deposits and limestone strata,
he argued, were absolute evidence of “some consolidating
power by which the loose materials that had subsided from
water should be formed into masses of the most perfect so-
lidity” (Hutton 1788, p. 209).

A month later, on 4 April, Hutton personally read the
second part in which he examined the various processes
that led to “congelation”, and drew on the extensive ex-
perimental activity of James Watt and Joseph Black, who
had already conducted experiments that resulted in crystal-
line fusion of pyrites, galena (lead sulphate) and quartz,
among other ores, at extremely high temperatures. He pro-
posed that there are only two ways by which rocks can
become consolidated into hard masses: either by water or
by fire, the latter acting by heat and fusion. He conceded
that water certainly produced some effects whereby dis-
solved particles can be precipitated, but, he observed, not
all chemical elements and compounds can be so dissolved,
citing fluor (fluorine, CaF$_2$) and sulphurous, bituminous
and siliceous compounds. His assertion that “no siliceous
body having the hardness of flint…has ever been formed,
except by fusion” was a direct attack on Neptunism (Hut-
ton 1788, p. 214). Proceeding to list a large number of
other minerals, which had also been fused by experimental
heat, Hutton claimed to have proved that “those strata have
been consolidated by simple fusion, and second, that this
operation is universal in relation to the strata of the earth”
(Hutton 1788, p. 225).

Hutton continued to deal with the fundamental issue
of earth formation: the Mosaic theory—held by Neptunists as
an article of faith—which he dismissed out of hand because
there was, as many others before had observed, no place “to
provide for the retirement of the waters of the globe”. His
argument asserted that the “operation by means of which
masses of loose materials, collected at the bottom of the sea,
were raised above its surface, and transformed into solid
land” was simply due to “extreme heat [which] expanded
with amazing force” and which continues “at present with
undiminished activity…in the fulness of their power” (Hut-
ton 1788, pp. 231–234).

Finally, Hutton covered the cyclic processes observable
in the earth, as he termed them, decay and renovation. Those
processes, consonant with the thought of the time, were evi-
dence of “order and design, of provident wisdom and benev-
oleence”, of the earth, its plants and animals, for the benefit of
mankind, ordained by the “Author of Nature” (Hutton 1788,
p. 245). The antiquity of the earth was clearly evident: the
fossils in the strata of “the former world must have been sus-
tained during the indefinite succession of ages…a system by
which they are intended to continue those revolutions”. It
is in vain, he concluded in his final paragraph, “to look for any-
thing higher in the origin of the earth. The result, therefore,
of our present enquiry is that we find no vestige of a begin-
ning, no prospect of an end” (Hutton 1788, p. 255). Deluges
and divine catastrophes were rejected as significant agents
of change and the Biblical assertion that the earth and all
of nature came into existence only 6000 years ago was now
challenged by the revolutionary conception of time reaching
back through uncountable eons.

Hutton’s _Theory of the Earth_ was published in 1788,
which he elaborated in 1795 in a two-volume _Theory of the
Earth_ (a third volume was published posthumously a century
later). In that subsequent work, the character of his deduc-
tive approach is well illustrated in his statement that it was
not based on extensive fieldwork but rather generated out of
an hypothesis, drawn from the observations of others, and a
giant speculative leap: “I just saw it, and no more, at Peters-
head and Aberdeen, but that was all the granite I had ever
seen when I wrote my *Theory of the Earth*. I have, since that time, seen it in different places; because I went on purpose to examine it” (Hutton 1795, I: p. 214). Hutton’s two dense volumes were redrafted after his death in more popular, readable form by the mathematician John Playfair in 1802 as “Illustrations of the Huttonian Theory of the Earth” generating considerable support.

Hutton’s theory, however, continued to be criticized for the next 20 years, chiefly by Kirwan from a theological standpoint, who attacked it for being atheistic. Some Neptunists, however, following Hutton, were beginning to waver as further proof of fusion from heat became advanced, chiefly by James Hall with the assistance of Watt and Black. In a series of some 500 experiments beginning as early as 1790 and continuing into the 1820s, Hall demonstrated that crushed granite and basalt could be melted in a high-temperature furnace and then allowed to cool slowly. His first significant report appeared in a *Memoir* to the Royal Society of Edinburgh in 1805 (Hall 1805, pp. 43–48), in which he concluded that “the stony character of lava is fully accounted for by slow cooling after the most perfect fusion”. The way was now being prepared for the development of a theory of reef formation from volcanism and basaltic earth movements, and the complementary reef processes exhibited in the coral specimens collected by naturalists during their voyages of exploration.
The Coral Reef Era: From Discovery to Decline
A history of scientific investigation from 1600 to the Anthropocene Epoch
Bowen, J.
2015, XV, 195 p. 35 illus., Hardcover
ISBN: 978-3-319-07478-8