Contents

1 Introduction .. 1
 1.1 Fluid Flow and Heat Transfer Modeling 5
 1.2 Geometry and Performance Optimization 5
 1.3 Exergy Versus Energy Analysis 6
 1.4 Entransy Extremum Theory 8
References ... 9

2 Fundamentals of Entransy and Entransy Dissipation Theory 11
 2.1 The Definition of Entransy and Entransy Dissipation 13
 2.2 Entransy Analysis in Conduction Heat Transfer 17
 2.3 Equivalent of Thermal Resistance in Heat Convection and Entransy Dissipation 18
 2.4 Conclusions 19
References ... 19

3 Application of Entransy Theory in Thermal Storage System 21
 3.1 Different Types of Performance Evaluation Coefficients: Efficiency and Effectiveness .. 23
 3.2 Exergy Analysis 24
 3.3 Velocity and Temperature Gradient Fields’ (Coordination) Synergy 25
 3.4 Modeling 28
 3.5 Applications to Thermal Energy Storage of Phase Change Materials 28
 3.5.1 Assumptions 29
 3.5.2 Heat Transfer Fluid Domain Dimensions 30
 3.5.3 Boundary Conditions and HTF Thermophysical Properties 32
 3.5.4 Test Cases and the Results: Group I 32
 3.5.5 Test Cases and the Results: Group II 36
 3.6 Concluding Remarks 39
References ... 39
4 Application of Entransy Theory in Absorption Refrigeration System

4.1 Thermodynamic Analysis of NH₃–NaSCN Absorption System
 4.1.1 Fluid Properties
 4.1.2 System Description and Analysis
 4.1.3 Performance Simulation of NH₃–NaSCN Absorption System

4.2 Results and Discussion

4.3 Concluding Remarks

References
Entransy in Phase-Change Systems
Gu, J.; Gan, Z.
2014, XIII, 56 p. 27 illus., 19 illus. in color., Softcover
ISBN: 978-3-319-07427-6