Contents

1 Introduction .. 1
 References .. 2

2 Thin Amorphous Fe–Tb Alloy Films 5
 2.1 Phase Diagram 5
 2.2 Intrinsic Magnetic Structure: Magnetic Anisotropy,
 Exchange Coupling, and Sperimagnetism 7
 2.3 Magnetic Properties with Regard to Alloy Composition,
 Film Thickness, and Temperature 9
 2.4 Magnetostriction 13
 2.5 Fe–Tb Films for Application 14
 References ... 16

3 Co/Pt Multilayers 19
 3.1 Origin of Magnetic Anisotropy 19
 3.2 Magnetic Properties Depending on the Structure
 of the Multilayers 21
 References ... 23

4 Exchange-Bias Effect in F/FI Rare-Earth-Transition-Metal
 Heterostructures 25
 References ... 28

5 Experimental Techniques 31
 5.1 Film Deposition Using Magnetron (Co-)Sputtering
 from Element Targets 31
 5.2 The Fabrication of Nanodot Arrays by Pre-patterning . 34
 5.3 Structural Characterization Techniques 35
 5.3.1 Estimation of Film Thickness by X-Ray
 Reflectometry 35
 5.3.2 Stoichometry Measurements by Rutherford
 Backscattering Spectrometry 36
 5.3.3 Determining Crystal Structures by X-Ray
 Diffraction 37
5.3.4 Film Morphology, Crystal Structure, and Topography
Investigations by Electron Microscopy 39
5.3.5 Surface Imaging by Atomic Force Microscopy 40
5.4 Investigation of Magnetic Properties 40
5.4.1 Magnetometry by Magneto-Optical Kerr Effect
Measurements ... 40
5.4.2 X-Ray Magnetic Circular Dichroism: An Element
Specific Probe for Magnetism 42
5.4.3 Integral Magnetic Measurements Using
a Superconducting Quantum Interference Device 45
5.4.4 Stray Field Imaging with Magnetic
Force Microscopy .. 48

References .. 49

6 Magnetic Order in Thin Fe\textsubscript{100-x}Tb\textsubscript{x} Films: A Temperature
and Stoichiometry Dependent Study 51
6.1 Morphology and Structural Properties 51
6.2 Sperimagnetism and Its Properties at Room Temperature 54
6.2.1 Net Saturation Magnetization, Coercivity,
and Magnetic Anisotropy with Respect to the Tb
Content of the Fe–Tb Alloy Film 54
6.2.2 Magnetization Reversal in Fe–Tb Films Dominated
by the Fe Sublattice .. 56
6.2.3 Magnetization Reversal in Fe–Tb Films Dominated
by the Tb Sublattice .. 57
6.3 The Influence of Temperature on the Sperimagnetic
Configuration ... 60
6.3.1 Magnetization Reversal for Various Temperatures
in Fe–Tb Films Dominated by the Fe Sublattice 64
6.3.2 Magnetization Reversal for Various Temperatures
in Fe–Tb Films Dominated by the Tb Sublattice 66
6.4 Reversal Mechanism in the Vicinity
of the Compensation Point 68
6.5 Summary ... 74
References .. 75

7 Percolated Fe\textsubscript{100-x}Tb\textsubscript{x} Nanodot Arrays: Exchange Interaction
and Magnetization Reversal .. 77
7.1 Morphology and Structural Properties of Thin Fe–Tb
Films on Pre-patterned Substrates 78
7.2 Magnetization Reversal and Pinning Effects 79
7.3 Lokal Magnetic Properties and Domain Configuration 80
7.4 Angular Dependency of the Switching Field for Nanodots
and Trench Material .. 84
8 Interfacial Exchange Coupling in Heterostructures of Fe–Tb Alloy Films and Co/Pt Multilayers

8.1 Morphology and Structural Properties

8.2 Interfacial Exchange Coupling with Regard to the Dominant Moment in the Fe–Tb Alloy System

8.2.1 Interfacial Exchange Coupling in Fe Dominated Heterostructures

8.2.2 Interfacial Exchange Coupling in Tb Dominated Heterostructures

8.2.3 The Interfacial Exchange Energy as Function of the Composition of the Fe–Tb Layer

8.3 Interfacial Exchange Coupling Depending on the Thickness of the F Layer

8.4 Interfacial Exchange Coupling Depending on the Thickness of the FI Pinning Layer

8.5 Training Effect in EB Heterostructures Dominated by an AF Exchange

8.5.1 Characteristic of the Training Effect with Respect to the Temperature

8.5.2 Influence of the Cooling Field on the Training Effect

8.5.3 Cycle Field Dependence of the EB Training Effect

8.6 Summary

9 Interlayer Exchange Coupling Through Pt Spacer Layers in Fe–Tb/Pt/[Co/Pt] Heterostructures

9.1 Morphology and Structural Properties

9.2 Influence of Pt Spacer Layer Thickness on the EB Field

9.3 Summary

10 Conclusions

Curriculum Vitae
Magnetic Order and Coupling Phenomena
A Study of Magnetic Structure and Magnetization
Reversal Processes in Rare-Earth-Transition-Metal
Based Alloys and Heterostructures
Schubert, C.
2014, XXI, 121 p. 74 illus., 18 illus. in color., Hardcover
ISBN: 978-3-319-07105-3