Contents

1 Introduction .. 1
 1.1 Magnetism in Nanoparticles 1
 1.2 Characterization of Magnetic Nanoparticles 4
 1.3 What We Cover in This Thesis 6
 1.4 Outline 9
 References 10

2 Experimental Techniques 13
 2.1 Transmission Electron Microscopy 13
 2.1.1 JEOL JEM 3,000 F 14
 2.1.2 FEI TecnaiTM G2 F30 STWIN 15
 2.2 SQUID Based Magnetometry 15
 2.3 Anomalous Hall Effect 17
 2.4 X-ray Absorption Spectroscopies in Synchrotron
 Radiation Facilities 18
 2.4.1 X-ray Absorption Fine Structure 21
 2.4.2 X-ray Magnetic Circular Dichroism 25
 References 29

3 Structural and Magnetic Properties of Amorphous
 Co–W Alloyed Nanoparticles 31
 3.1 Samples Studied 32
 3.2 Morphological and Structural Study 34
 3.2.1 Microscopy Measurements 34
 3.2.2 XANES and EXAFS Measurements 39
 3.3 Magnetic Study 49
 3.3.1 SQUID-Based Magnetometry 49
 3.3.2 Magnetic Anisotropy of the Co–W Particles 55
 3.3.3 X-ray Magnetic Circular Dichroism Magnetometry. 56
3.4 Discussion

- Page: 59

3.5 Conclusions

- Page: 64

References

- Page: 64

4 Breakdown of Hund’s Third Rule in Amorphous Co–W Alloy Nanoparticles

4.1 XANES and XMCD Measurements

- Page: 68
 - 4.1.1 Co K Edge Results
 - Page: 69
 - 4.1.2 W L_{2,3} Edges Results
 - Page: 71

4.2 Calculations of DOS, XANES and XMCD

- Page: 74
 - 4.2.1 DOS Calculations
 - Page: 75
 - 4.2.2 Co K Edge
 - Page: 76
 - 4.2.3 W L_{2,3} Edges
 - Page: 77

4.3 Discussion

- Page: 78

4.4 Conclusion

- Page: 80

References

- Page: 80

5 Structural and Magnetic Properties of Co–Pt Nanoparticles

5.1 Samples Studied

- Page: 84

5.2 Morphological and Structural Study

- Page: 84
 - 5.2.1 Microscopy Measurements
 - Page: 84
 - 5.2.2 XANES and EXAFS Measurements
 - Page: 86

5.3 Magnetic Study

- Page: 93
 - 5.3.1 SQUID-Based Magnetometry
 - Page: 93
 - 5.3.2 Anomalous Hall Effect Magnetometry
 - Page: 99
 - 5.3.3 X-ray Magnetic Circular Dichroism Magnetometry
 - Page: 101

5.4 Discussion

- Page: 108

5.5 Conclusions

- Page: 111

References

- Page: 112

6 d-Band Magnetism of Ag, Au, Pd and Pt Nanostructured Materials

6.1 Magnetism in Bulk Metals

- Page: 115

6.2 Induced Magnetism in Nanoparticle Matrix

- Page: 117

6.3 Intrinsic Magnetic Moment in M Nanoparticles

- Page: 118

6.4 Conclusions

- Page: 123

References

- Page: 124

7 Transverse Susceptibility Measurement System for the PPMS

7.1 Theoretical Model of the Magnetic Transverse Susceptibility

- Page: 127

7.2 Description of the TS Measurement System

- Page: 128

7.3 Design and Implementation of the Oscillator Circuit

- Page: 130

7.4 Data Acquisition

- Page: 132
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5 Test Measurements</td>
<td>137</td>
</tr>
<tr>
<td>7.5.1 Test Measurements on an Empty Coil</td>
<td>137</td>
</tr>
<tr>
<td>7.5.2 Calibration of the TS Measurement System with Gd$_2$O$_3$</td>
<td>139</td>
</tr>
<tr>
<td>7.5.3 Test Measurements on a Known and Previously Characterized Sample with a TDO Based TS System</td>
<td>140</td>
</tr>
<tr>
<td>7.5.4 Low Temperature Measurements on TmCo$_2$</td>
<td>142</td>
</tr>
<tr>
<td>7.6 Conclusions</td>
<td>142</td>
</tr>
<tr>
<td>References</td>
<td>143</td>
</tr>
<tr>
<td>8 Transverse Susceptibility of Iron Oxide Nanoparticles Systems</td>
<td>145</td>
</tr>
<tr>
<td>8.1 Magnetite Nanoparticles</td>
<td>145</td>
</tr>
<tr>
<td>8.1.1 Experimental</td>
<td>146</td>
</tr>
<tr>
<td>8.1.2 Magnetic Properties</td>
<td>148</td>
</tr>
<tr>
<td>8.1.3 Discussion</td>
<td>150</td>
</tr>
<tr>
<td>8.1.4 Conclusions</td>
<td>153</td>
</tr>
<tr>
<td>8.2 Maghemite Nanoparticles</td>
<td>154</td>
</tr>
<tr>
<td>8.2.1 TS Measurements</td>
<td>155</td>
</tr>
<tr>
<td>8.2.2 Discussion</td>
<td>156</td>
</tr>
<tr>
<td>8.2.3 Conclusions</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
<tr>
<td>9 General Conclusions</td>
<td>163</td>
</tr>
<tr>
<td>9.1 Perspectives</td>
<td>164</td>
</tr>
<tr>
<td>References</td>
<td>165</td>
</tr>
</tbody>
</table>
Magnetic Nanoparticles
A Study by Synchrotron Radiation and RF Transverse Susceptibility
Figueroa, A.I.
2015, XI, 165 p. 85 illus., 2 illus. in color., Hardcover
ISBN: 978-3-319-07093-3