Contents

1 Introduction .. 1
 1.1 Biological Sequences: Living Information 1
 1.2 The Special Case of RNA 2
 1.3 Post-transcriptional Regulation 3
 1.3.1 The Life of mRNA 3
 1.3.2 Untranslated Regions as Regulatory Hot Spots 7
 1.4 The Transcriptome Is a Complex Regulatory Substrate .. 8
 1.4.1 A Note on Specificity 9
 1.4.2 Sequence Composition of Transcribed RNAs 10
 1.5 RNA Regulators 11
 1.5.1 RNA-Binding Proteins 11
 1.5.2 MicroRNAs 12
 1.5.3 RNA Competition and Target Site “Decoys” 13
 1.5.4 Circular RNA 14
 1.6 Transcription of RNA as a “Decompression” of Genetic
 Information .. 14
References ... 15

2 Computational Analysis of PAR-CLIP Data 21
 2.1 About CLIP ... 21
 2.2 Computational Pipelines for PAR-CLIP Analysis 22
 2.3 The Rajewsky Lab Pipeline 23
 2.3.1 CLIP Read Pre-processing 24
 2.3.2 Alignment to the Reference Sequence 25
 2.3.3 Clustering of Aligned Reads 25
 2.3.4 Consensus Rules 25
 2.3.5 Annotation and Quality Scoring of Clusters 25
 2.3.6 False Discovery Rate Estimation 26
 2.3.7 Adaptive Cluster Filtering 27
 2.3.8 Possible Improvements 29

xiii
3 Transcriptome-Wide Analysis of Regulatory Interactions of the RNA-Binding Protein HuR

3.1 Thousands of Endogenous HuR Binding Sites
3.2 HuR Binds Single Stranded, U-rich Sequences
3.2.1 Reconstructing Affinities from PAR-CLIP Data
3.3 HuR Binding Sites are Highly Conserved
3.4 HuR Binds Uniformly in 3'UTRs, Close to 3' Splice Sites Within Introns
3.5 HuR Depletion Destabilizes Target mRNAs
3.6 HuR Modulates Alternative Splicing
3.7 HuR Dependent Processing of miR-7
3.8 Open Questions

4 Binding Site Occupancy with Competition Interactions in Equilibrium

4.1 Occupancy of a Single Binding Site
4.2 Occupancies of Multiple Binding Sites
4.3 Choosing a Distribution of Dissociation Constants
4.4 Free Protein Concentration Versus Total Protein Concentration
4.5 Shifted Thresholds
4.6 Enhanced Linear Regime and Peaking Susceptibilities
4.7 Competition Induces Crosstalk Between Binding Sites
4.8 Conclusions

5 Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency

5.1 The circRNA CDR1as As a Potential Sponge for miR-7
5.2 CDR1as and miR-7 are Co-expressed in Neuronal Tissue
5.3 CDR1as Expression in Zebrafish Phenocopies miR-7 Inhibition
5.4 Identifying Animal Circular RNAs from Deep Sequencing Data
5.5 Validation of circRNA Candidates

References
6 Discussion .. 81
6.1 Circular RNA .. 81
6.2 Competition in Post-transcriptional Regulation 83
6.3 Global Properties of the Transcriptome 84
References ... 85

7 Methods ... 87
7.1 Gene Expression Measurements 87
7.1.1 PolyA+ Transcriptome Sequencing 87
7.1.2 Ribominus Sequencing 87
7.1.3 Small RNA Sequencing 87
7.1.4 Mass Spectrometry 88
7.1.5 NanoString nCounter Assay 88
7.1.6 RT-PCR .. 88
7.2 Quantification of Splicing 88
7.3 RNA-Protein Interaction 89
7.3.1 PAR-CLIP 89
7.3.2 RIP-PCR 89
7.4 Assays for Circularity 89
7.4.1 PCR Amplification and Sanger Sequencing 89
7.4.2 Primer Design 90
7.4.3 RNase-R Treatment 90
7.5 Cell Culture and Treatments 90
7.5.1 siRNA Transfection 90
7.5.2 Single-Molecule RNA Fluorescence In Situ
 Hybridization (smRNA FISH) 91
7.6 Zebrafish Methods 91
7.6.1 Fish Lines 91
7.6.2 Morpholino Injection 91
7.6.3 RNA Injection 91
7.6.4 Plasmid Injection 92
7.6.5 Microscopy 92
7.7 C. elegans Methods 92
7.7.1 Oocyte Isolation 93
7.7.2 Sperm Isolation 93
7.7.3 Isolation of 1-Cell- and 2-Cell-Stage Embryos .. 93
7.7.4 Ribominus RNA Preparation from C. elegans
 Samples .. 93
7.7.5 Cluster Generation and Sequencing of C. elegans
 Libraries ... 94
7.8 Analysis of Sequence Conservation in CDR1as 94
7.9 Computational Pipeline for Predicting circRNAs
 from Ribominus Sequencing Data 94
 7.9.1 Splice Site Detection 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9.2</td>
<td>Permutation Testing</td>
<td>96</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Intersection of circRNAs with Known Transcripts</td>
<td>96</td>
</tr>
<tr>
<td>7.9.4</td>
<td>Finding circRNAs Conserved Between Human and Mouse</td>
<td>97</td>
</tr>
<tr>
<td>7.9.5</td>
<td>Analysis of Coding Exon circRNAs</td>
<td>97</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>

Author’s Biography .. 99
Dissecting Regulatory Interactions of RNA and Protein Combining Computation and High-throughput Experiments in Systems Biology
Jens, M.
2014, XVIII, 99 p. 38 illus., 19 illus. in color., Hardcover
ISBN: 978-3-319-07081-0