Contents

1 Basic Concepts ... 1
 1.1 Introduction: Whys and Hows of Quantum Many-Body Theory .. 1
 1.1.1 Screening of Coulomb Potential in Metal 3
 1.1.2 Time-Dependent Effects: Plasmons 6
 1.2 Propagation Function in a One-Body Quantum Theory 8
 1.2.1 Propagator: Definition and Properties 8
 1.2.2 Feynman’s Formulation of Quantum Mechanics: Path (Functional) Integrals 13
 1.2.3 Quantum Transport in Mesoscopic Rings: Path Integral Description 20
 1.3 Perturbation Theory for the Propagator 24
 1.3.1 General Formalism 24
 1.3.2 An Example: Potential Scattering 30
 1.4 Second Quantization 33
 1.4.1 Description of Large Collections of Identical Particles: Fock’s Space 33
 1.4.2 Bosons ... 36
 1.4.3 Number and Phase Operators and Their Uncertainty Relation 43
 1.4.4 Fermions .. 46
 1.5 Problems ... 49
 References .. 50

2 Green’s Functions at Zero Temperature 53
 2.1 Green’s Function of The Many-Body System: Definition and Properties 53
 2.1.1 Definition of Green’s Functions of the Many-Body System 53
 2.1.2 Analytic Properties of Green’s Functions 62
 2.1.3 Retarded and Advanced Green’s Functions 67
 2.1.4 Green’s Function and Observables 70
2.2 Perturbation Theory: Feynman Diagrams
 2.2.1 Derivation of Feynman Rules. Wick’s and Cancellation Theorems
 2.2.2 Operations with Diagrams. Self Energy. Dyson’s Equation
 2.2.3 Renormalization of the Interaction. Polarization Operator
 2.2.4 Many-Particle Green’s Functions. Bethe–Salpeter Equations. Vertex Function

2.3 Problems

References

3 More Green’s Functions, Equilibrium and Otherwise, and Their Applications
 3.1 Analytic Properties of Equilibrium Green’s Functions
 3.1.1 Statistical Operator (Density Matrix): The Liouville Equation
 3.1.2 Definition and Analytic Properties of Equilibrium Green’s Functions
 3.2 Matsubara Formalism
 3.2.1 Bloch’s Equation
 3.2.2 Temperature (Matsubara) Green’s Function
 3.2.3 Perturbation Series and Diagram Techniques for the Temperature Green’s Function
 3.3 Linear Response Theory
 3.3.1 Linear Response Theory: Kubo Formulas
 3.3.2 Fluctuation-Dissipation Theorem
 3.4 Nonequilibrium Green’s Functions
 3.4.1 Nonequilibrium Causal Green’s Function: Definition
 3.4.2 Contour Ordering and Three More Nonequilibrium Green’s Functions
 3.4.3 The Keldysh Formalism
 3.5 Quantum Kinetic Equation
 3.5.1 Dyson’s Equations for Nonequilibrium Green’s Functions
 3.5.2 The Quantum Kinetic Equation
 3.6 Application: Electrical Conductivity of Quantum Point Contacts
 3.6.1 Quantum Electrical Conductivity in the Elastic Limit
 3.6.2 Elastic Resistance of a Point Contact: Sharvin Resistance, the Landauer Formula, and Conductance Quantization
3.6.3 The Electron–Phonon Collision Integral in 3D Quantum Point Contact 145
3.6.4 Calculation of the Inelastic Component of the Point Contact Current 147

3.7 Method of Tunneling Hamiltonian .. 149
3.8 Problems .. 154
References .. 155

4 Methods of the Many-Body Theory in Superconductivity 157
4.1 Introduction: General Picture of the Superconducting State 157
4.2 Instability of the Normal State ... 168
4.3 Pairing (BCS) Hamiltonian .. 172
 4.3.1 Derivation of the BCS Hamiltonian 172
 4.3.2 Diagonalization of the BCS Hamiltonian: The Bogoliubov Transformation—Bogoliubov-de Gennes Equations 175
 4.3.3 Bogolons ... 177
 4.3.4 Thermodynamic Potential of a Superconductor 179
4.4 Green’s Functions of a Superconductor: The Nambu-Gor’kov Formalism .. 181
 4.4.1 Matrix Structure of the Theory .. 181
 4.4.2 Elements of the Strong Coupling Theory 182
 4.4.3 Gorkov’s Equations for the Green’s Functions 185
 4.4.4 Current-Carrying State of the Superconductor 189
 4.4.5 Destruction of Superconductivity by Current 194
4.5 Andreev Reflection ... 197
 4.5.1 The Proximity Effect in a Normal Metal in Contact with a Superconductor 203
 4.5.2 Andreev Levels and Josephson Effect in a Clean SNS Junction 204
 4.5.3 Josephson Current in a Short Ballistic Junction: Quantization of Critical Current in Quantum Point Contact .. 206
 4.5.4 Josephson Current in a Long SNS Junction 209
 4.5.5 Transport in Superconducting Quantum Point Contact: The Keldysh Formalism Approach ... 215
4.6 Tunneling of Single Electrons and Cooper Pairs Through a Small Metallic Dot: Charge Quantization Effects .. 217
 4.6.1 Coulomb Blockade of Single-Electron Tunneling 218
 4.6.2 Superconducting Grain: When One Electron Is Too Many 220
4.7 Problems .. 223
References .. 224
Quantum Theory of Many-Body Systems
Techniques and Applications
Zagoskin, A.
2014, XVI, 280 p. 154 illus., Hardcover
ISBN: 978-3-319-07048-3