Contents

Part I AC IT Systems

1 General Characteristics ... 3
 1.1 AC IT Systems Circuit Diagrams ... 3
 1.2 Phase-to-Ground Voltages Determination in AC IT Systems 4
 1.2.1 Single-Phase Systems .. 4
 1.2.2 Three-Phase Systems ... 6
 1.3 Ground Fault and Leakage Currents Calculation 8
 1.3.1 Single-Phase Networks 8
 1.3.2 Three-Phase Networks 11

2 Ground Insulation Measurement in AC IT Systems 15
 2.1 General Information ... 15
 2.1.1 Spatial Distribution of Insulation Resistance: Network’s
 Insulation Equivalent Circuit 15
 2.2 Insulation Parameters Determination in Single-Phase Networks 16
 2.2.1 De-energized Networks 16
 2.2.2 Live Networks .. 19
 2.3 Insulation Parameters Determination in Live Three-Phase Networks .. 21
 2.3.1 Insulation Equivalent Resistance and Capacitance
 Values Determination .. 21
 2.3.2 Insulation Resistance and Capacitance Determination
 for Single Phases .. 24
 2.4 Unconventional Measurement Methods 29
 2.4.1 Periodical Measurement of Insulation Parameters 29
 2.4.2 Devices and Systems for Ground Fault, Earth Leakage
 and Shock Currents Measurement 32
 2.5 Influence of Insulation Parameters on Possible Ground Fault,
 Electric Shock and Ground Leakage Currents Levels 35
 2.5.1 Assessment of Ground Fault and Ground
 Leakage Currents .. 35
 2.5.2 Assessment of Power Losses in Insulation 36
2.5.3 Electric Shock Hazard Assessment 37
2.6 Ground Fault Current Compensation 38
References .. 41

3 Insulation Monitoring Systems 43
3.1 Visual Signalization Systems 43
3.2 Other Systems of Continuous Insulation Monitoring 45
 3.2.1 Phase Voltages Monitoring 45
 3.2.2 Zero-Sequence Voltage Component Monitoring 46
 3.2.3 Residual Current Monitoring 48
 3.2.4 Underimpedance System 52

4 Systems of Insulation Resistance Continuous Measurement 57
4.1 Measurement Circuits with Test Direct Current 57
4.2 Measuring Circuits with Diode Rectifier 58
 4.2.1 Star Connected Diode Rectifier 58
 4.2.2 Diode Bridge Rectifier 62
 4.2.3 Other Rectifier Based Measuring Circuits 64
4.3 Measurement Method with an Auxiliary Rectangular
 Voltage Source ... 67
 4.3.1 Examples of Application 68
4.4 Measurement with Use of Auxiliary AC Voltage 69
 4.4.1 Application Example 71
References .. 71

Part II DC IT Systems

5 Equivalent Circuit Diagrams of DC Networks 75
5.1 DC Network Simplified Circuit Diagram 75
5.2 Equivalent Circuit Diagrams of Batteries 77
Reference .. 81

6 Insulation Resistance Measurement Methods 83
6.1 Traditional Methods of Periodical Measurement of Insulation
 Resistance in Live Networks 83
6.2 Other Analytical Methods 86
6.3 Unconventional Methods of Insulation Resistance Measurement.. 87
6.4 Evaluation of Errors of Analytical Methods 90

7 Devices and Systems for Insulation Deterioration Alarming .. 93
7.1 Visual Signaling of Insulation Resistance Level 93
7.2 Simple Systems of Continuous Insulation Monitoring 94
Reference .. 98
8 Modern Methods of Continuous Insulation Measurement
8.1 Measurements with Superimposed AC Test Voltage
8.2 Commutation Method
8.2.1 Example of Application
8.2.2 Determination of Insulation Equivalent Resistance of DC Network and Its Single Lines
8.2.3 Example of Application
8.3 “Pulse” Test Voltage Method
8.3.1 An Example of Application
8.4 Unconventional Methods of Insulation Resistance Monitoring
8.4.1 Insulation Supervision with Insulation Leakage Resistance Control
8.4.2 Method of Auxiliary Voltage “Triangle” Pulses
8.4.3 System of Automatic Insulation-to-Ground Capacitance Compensation
References

9 Ground Fault, Leakage and Electric Shock Currents in DC IT Systems
9.1 Time Function of Ground Fault Current
9.2 Measurements of Maximum and Steady-State Magnitudes of Earth Fault Current
9.3 Earth Leakage Currents
9.3.1 Calculations
9.3.2 Electric Shock Hazard Assessment
9.4 Leakage Current Measurements
9.4.1 Periodic Measurements
9.4.2 Continuous Measurements
9.5 Earth Fault and Shock Currents Measurement
9.5.1 Earth Fault and Shock Currents Measurements in Network Models
9.5.2 Earth Fault and Shock Currents Measurements in Live Networks
9.6 Network-to-Ground Capacitance Determination
References

Part III AC and DC IT Systems

10 Effects of Insulation Failures
10.1 Reasons of Insulation Failures
10.2 Effects of Network Insulation Failures
10.3 Misoperation of Devices
10.4 Prevention of Devices Misoperation
10.4.1 Device Coil Shunted by Resistor
10.4.2 Device Coil Shunted by Other Elements 140
10.4.3 Disconnection of Both Terminals of Device Coil 141
10.4.4 Coil Shorting by NC Contact 141
10.4.5 Limitation of Total Conductor-to-Conductor and Conductor-to-Ground Capacitances 142
10.4.6 Insulation Resistance Control by Grounding Through Resistors 143
Reference .. 144

11 Insulation Monitors Settings Selection 145
11.1 General ... 145
11.2 Regulations Requirements for DC Systems 146
11.3 Modified Approach for DC IT Networks 147
 11.3.1 Shock and Fire Hazard Assessment 147
 11.3.2 Misoperation of Devices in DC Circuits 148
 11.3.3 Examples of Practical Checking of Insulation Condition Assessment Criteria 150
 11.3.4 Graphical Illustration of Insulation Conditions in DC IT Networks 152
11.4 AC Insulation Monitors Settings Selection 153
 11.4.1 Simplified Approach 153
 11.4.2 Electric Shock and Fire Hazard Assessment 154
 11.4.3 Misoperation Risk for Devices in AC IT Auxiliary Circuits 156
 11.4.4 Insulation Monitors Application for Devices Misoperation Risk Detection 157
References .. 158

12 AC/DC IT Systems .. 159
12.1 Conductor-to-Ground Voltages 159
12.2 Earth Fault and Leakage Currents 161
12.3 Misoperation of Devices in “Mixed” Systems 163
12.4 Insulation Resistance Measurement in AC/DC IT Systems ... 166
 12.4.1 Method of “Three Readings of a Voltmeter” 166
 12.4.2 Utilization of Mean Value of Phase Voltage 167
 12.4.3 Pulse Voltage Method 170
 12.4.4 Auxiliary AC Voltage Method 170
12.5 Insulation Resistance Measurement in IT Systems with Frequency Converters 171
References .. 172

13 Earth Fault Location in IT AC/DC Systems 173
13.1 General ... 173
13.2 Test Current Measurement in Fault Locating Systems 175
13.3 Traditional Earth Fault Location Systems 176
<table>
<thead>
<tr>
<th>13.4</th>
<th>Modern Insulation Fault Location Systems</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.1</td>
<td>Pulse Voltage Test Signal: EDS470 (Bender)</td>
<td>177</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Sinusoidal Test Current: Vigilohm (Schneider)</td>
<td>178</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Saw-Like Test Voltage Pulses: IPI-1M (Elterm)</td>
<td>178</td>
</tr>
<tr>
<td>13.4.4</td>
<td>Periodical Current Pulses: AT-3000 (Amprobe)</td>
<td>179</td>
</tr>
</tbody>
</table>

References .. 180
Insulation Measurement and Supervision in Live AC and DC Unearthed Systems
Olszowiec, P.
2014, XI, 180 p. 132 illus., Hardcover
ISBN: 978-3-319-07009-4