Contents

1 **Dynamical Systems** ... 1
 1.1 Introduction ... 1
 1.2 Dynamical Systems and Mathematical Models 1
 1.3 Kinematic Interpretation of a System of Differential Equations ... 3
 1.4 Definition of a Dynamical System: Classification 4
 1.5 Phase Portraits of Typical Oscillatory Systems 7
 1.5.1 Conservative Oscillator .. 7
 1.5.2 Damped Linear Oscillator .. 9
 1.6 Self-Sustained Oscillatory Systems 11
 1.7 Regular and Chaotic Attractors ... 13
 1.8 Discrete-Time Systems: Return Maps 16
 1.8.1 Stretching Map .. 20
 1.8.2 Logistic Map ... 20
 1.8.3 Sine Map .. 20
 1.8.4 Henon Map ... 20
 1.8.5 Lozi Map .. 20
 1.9 Summary .. 21
 References .. 21

2 **Stability of Dynamical Systems: Linear Approach** 23
 2.1 Introduction ... 23
 2.2 Definition of Stability ... 24
 2.3 Linear Analysis of Stability .. 25
 2.3.1 Stability of Solutions of a First-Order Differential Equation .. 25
 2.3.2 Stability of a Dynamical System in \mathbb{R}^N 27
 2.4 Stability of Phase Trajectories in Discrete-Time Systems 33
 2.5 Summary .. 34
 References .. 35
3 Bifurcations of Dynamical Systems ... 37
 3.1 Introduction .. 37
 3.2 Double Equilibrium Bifurcation ... 39
 3.3 Soft and Hard Bifurcations: Catastrophes 40
 3.4 Triple Equilibrium Bifurcation ... 41
 3.5 Andronov–Hopf Bifurcation .. 43
 3.6 Bifurcations of Limit Cycles ... 44
 3.6.1 Saddle-Node Bifurcation .. 44
 3.6.2 Period-Doubling Bifurcation 45
 3.6.3 Two-Dimensional Torus Birth (Death)
 Bifurcation (Neimark–Saker Bifurcation) 46
 3.6.4 Symmetry-Breaking Bifurcation 47
 3.7 Nonlocal Bifurcations: Homoclinic Trajectories and Structures ... 48
 3.7.1 Separatrix Loop of a Saddle Equilibrium Point 48
 3.7.2 Saddle-Node Separatrix Loop 50
 3.7.3 Homoclinic Trajectory Appearance of a Saddle Limit Cycle ... 51
 3.8 Summary .. 52
 References .. 52

4 Dynamical Systems with One Degree of Freedom 53
 4.1 Introduction .. 53
 4.2 Limit Sets and Attractors in the Phase Plane: The Andronov–Poincaré Limit Cycle ... 54
 4.3 Structural Stability of Systems in the Phase Plane: Andronov–Pontryagin Systems ... 56
 4.3.1 Definition of Robustness of a Dynamical System 56
 4.3.2 Definition of Structural Stability of a Dynamical System .. 57
 4.3.3 Andronov–Pontryagin Theorem 57
 4.4 Oscillators with One Degree of Freedom 58
 4.4.1 Froude Pendulum ... 58
 4.4.2 Fastened Weight on a Moving Belt 60
 4.4.3 RC-Oscillator with Wien Bridge 62
 4.4.4 Oscillatory Circuit with Active Nonlinear Element 63
 4.5 Analysis of the van der Pol Equation: Onset of Self-Sustained Oscillations ... 65
 4.5.1 Amplitude and Phase Equations for the Self-Sustained Oscillator ... 66
 4.6 Oscillator with Hard Excitation of Self-Sustained Oscillations .. 69
 4.6.1 Analysis of the Stability of Equilibrium States 69
 4.6.2 Truncated Equations for the Amplitude and Phase for the Oscillator with Hard Excitation 70
4.6.3 Bifurcation Diagram of the Oscillator with Hard Excitation 71
4.7 Summary .. 73
References.. 73

5 Systems with Phase Space Dimension $N \geq 3$: Deterministic Chaos .. 75
5.1 Introduction .. 75
5.2 Determinism and Chaos for Beginners .. 76
 5.2.1 Determinism ... 76
 5.2.2 Chaos ... 77
 5.2.3 Stability and Instability .. 77
 5.2.4 Nonlinearity ... 78
 5.2.5 Instability and Nonlinear Restriction .. 78
 5.2.6 Deterministic Chaos ... 80
5.3 Mixing and Probabilistic Properties of Deterministic Systems 81
5.4 Is Deterministic Chaos a Mathematical Oddity or a Typical Property of the Material World? 83
5.5 Strange Chaotic Attractors ... 84
5.6 Strange Nonchaotic and Chaotic Nonstrange Attractors .. 85
 5.6.1 Chaotic Nonstrange Attractors .. 86
 5.6.2 Strange Nonchaotic Attractors .. 88
 5.6.3 Geometric Characteristics of SNAs ... 88
 5.6.4 LCE Spectrum of SNAs ... 89
 5.6.5 Spectrum and Autocorrelation Function ... 89
5.7 Summary .. 90
References.. 91

6 From Order to Chaos: Bifurcation Scenarios (Part I) ... 93
 6.1 Introduction ... 93
 6.2 Transition to Chaos via a Cascade of Period-Doubling Bifurcations: Feigenbaum Universality ... 94
 6.3 Crisis and Intermittency ... 102

7 From Order to Chaos: Bifurcation Scenarios (Part II) .. 107
 7.1 Route to Chaos via Two-Dimensional Torus Destruction 107
 7.1.1 Two-Dimensional Torus Breakdown Theorem ... 108
 7.1.2 Circle Map: Universal Regularities of Soft Transition from Quasiperiodicity to Chaos ... 111
 7.2 Route to Chaos via Ergodic Torus Destruction: Chaotic Nonstrange Attractors ... 115
 7.3 Summary .. 121
References.. 122

8 Robust and Nonrobust Dynamical Systems: Classification of Attractor Types 123
 8.1 Introduction ... 123
 8.2 Homoclinic and Heteroclinic Curves .. 124
8.3 Structurally Stable Systems in \mathbb{R}^N, $N \geq 3$: Hyperbolicity
8.3.1 Morse–Smale Systems
8.3.2 Hyperbolic Sets
8.3.3 Anosov Systems
8.3.4 Smale Systems with Nontrivial Hyperbolicity: Strange Attractors
8.4 Structurally Unstable Dynamical Systems
8.5 Quasihyperbolic Attractors: Lorenz-Type Attractors
8.5.1 Quasihyperbolic Attractor in the Lozi Map
8.5.2 The Lorenz Attractor
8.6 Nonhyperbolic Attractors and Their Properties
8.6.1 Nonhyperbolic Attractor in the Henon Map
8.6.2 Nonhyperbolic Attractor in the Oscillator with Inertial Nonlinearity
8.7 Summary
References

9 Characteristics of Poincaré Recurrences
9.1 Introduction
9.2 Local Approach
9.2.1 Kac’s Lemma
9.2.2 Exponential Law for Distribution of First Recurrence Times
9.2.3 Numerical Examples
9.3 Global Approach: Afraimovich–Pesin Dimension of Recurrence Times
9.4 Afraimovich–Pesin Dimension and Lyapunov Exponents
9.5 Summary
Reference

10 Fractals in Nonlinear Dynamics
10.1 Introduction
10.2 Definition of a Fractal: Classic Examples of Fractal Sets
10.3 The Nature of Fractality in Dynamical Systems
10.4 Fractal Dimensions of Sets
10.4.1 The Hausdorff–Besicovitch Dimension
10.4.2 Capacity D_C
10.4.3 Information Dimension D_I
10.4.4 Correlation Dimension D_{cor}
10.4.5 Generalized Dimension D_q
10.4.6 Lyapunov Dimension D_L
10.5 Relationship Between Different Dimensions
10.6 Summary
References
<table>
<thead>
<tr>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 The Anishchenko–Astakhov Oscillator of Chaotic Self-Sustained Oscillations</td>
<td>175</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>175</td>
</tr>
<tr>
<td>11.2 Theodorchik’s Oscillator</td>
<td>177</td>
</tr>
<tr>
<td>11.3 Modification of the Oscillator with Inertial Nonlinearity:</td>
<td>182</td>
</tr>
<tr>
<td>11.3.1 Periodic Regimes of Self-Sustained Oscillations and Their</td>
<td>184</td>
</tr>
<tr>
<td>Bifurcations</td>
<td></td>
</tr>
<tr>
<td>11.3.2 Period-Doubling Bifurcations: Feigenbaum Universality</td>
<td>192</td>
</tr>
<tr>
<td>11.3.3 Chaotic Attractor and Homoclinic Trajectories in the Oscillator</td>
<td>194</td>
</tr>
<tr>
<td>11.4 Summary</td>
<td>200</td>
</tr>
<tr>
<td>References</td>
<td>201</td>
</tr>
<tr>
<td>12 Quasiperiodic Oscillator with Two Independent Frequencies</td>
<td>203</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>203</td>
</tr>
<tr>
<td>12.2 Methods for Realizing Two-Frequency Oscillations and Their</td>
<td>204</td>
</tr>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>12.3 Statement of Oscillator Equations</td>
<td>208</td>
</tr>
<tr>
<td>12.4 Bifurcation Diagram of the Quasiperiodic Oscillator</td>
<td>211</td>
</tr>
<tr>
<td>12.5 Two-Dimensional Torus-Doubling Bifurcation</td>
<td>212</td>
</tr>
<tr>
<td>12.6 Summary</td>
<td>215</td>
</tr>
<tr>
<td>13 Synchronization of Periodic Self-Sustained Oscillations</td>
<td>217</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>217</td>
</tr>
<tr>
<td>13.2 Forced Synchronization of the van der Pol Oscillator:</td>
<td>218</td>
</tr>
<tr>
<td>Truncated Equations for the Amplitude and Phase</td>
<td></td>
</tr>
<tr>
<td>13.2.1 Analysis of Synchronization in the Phase Approximation</td>
<td>221</td>
</tr>
<tr>
<td>13.2.2 Bifurcational Analysis of the System of Truncated Equations</td>
<td>225</td>
</tr>
<tr>
<td>13.2.3 Bifurcational Analysis of the Nonautonomous van der Pol</td>
<td>230</td>
</tr>
<tr>
<td>Oscillator</td>
<td></td>
</tr>
<tr>
<td>13.3 Mutual Synchronization: Effect of Oscillation Death in Dissipatively Coupled van der Pol Oscillators</td>
<td>236</td>
</tr>
<tr>
<td>13.4 Summary</td>
<td>242</td>
</tr>
<tr>
<td>References</td>
<td>243</td>
</tr>
<tr>
<td>14 Synchronization of Two-Frequency Self-Sustained Oscillations</td>
<td>245</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>245</td>
</tr>
<tr>
<td>14.2 Influence of an External Periodic Force on a Resonant Limit Cycle in a System of Coupled Oscillators</td>
<td>245</td>
</tr>
<tr>
<td>14.3 Basic Bifurcations of Quasiperiodic Regimes When Synchronizing a Resonant Limit Cycle</td>
<td>248</td>
</tr>
<tr>
<td>14.3.1 Peculiarities in the Synchronization of Resonant Limit Cycles</td>
<td>251</td>
</tr>
</tbody>
</table>
14.3.2 Phase Synchronization of a System of Coupled van der Pol Oscillators by an External Harmonic Signal 254
14.3.3 Bifurcations of Equilibrium States 257
14.3.4 Bifurcations of Invariant Curves 260
14.3.5 Synchronization of Two-Frequency Oscillations in a Self-Sustained Quasiperiodic Oscillator .. 263
14.4 Summary .. 270

15 Synchronization of Chaotic Oscillations 273
15.1 Introduction ... 273
15.2 Phase–Frequency Synchronization of Chaotic Self-Sustained Oscillations .. 274
15.3 Experimental Investigation of Forced Synchronization of an Oscillator with Spiral Chaos ... 283
15.4 Complete Synchronization of Interacting Chaotic Systems 285
15.5 Quantitative Characteristics of the Degree of Synchronization of Chaotic Self-Sustained Oscillations 290
15.6 Summary ... 294
References.. 294
Deterministic Nonlinear Systems
A Short Course
Anishchenko, V.S.; Vadivasova, T.E.; Strelkova, G.I.
2014, XIV, 294 p. 172 illus., 2 illus. in color., Hardcover
ISBN: 978-3-319-06870-1