There is such a huge literature on argument from analogy that during the early stages of my career I avoided work on the subject because so many scholars in so many fields had already written so much about it. When asked by a group of graduate students whether it would be a good idea to start a research project on argument from analogy some time ago, I cautioned them against it, or at least warned them about the dangers inherent in such a project, simply because of this huge existing literature they would have to go through. The fields that comprise this literature include not only argumentation studies, but also logic, cognitive science, ethics, law, literature, philosophy of science, computer science and the social sciences generally (Guarini et al. 2009). However, it is an important type of argument for us in the field of argumentation studies to deal with, if only because it is such a common and pervasive form of argument almost everywhere, but also because many logic textbooks have emphasized how it is an important informal fallacy by citing examples of improper uses of argument from analogy (Kienpointner 2012). So recently I too, yielding to necessity, have taken up writing on argument from analogy.

After surveying the literature on argument from analogy in some recent work, I came to the conclusion that there are two different types of argument from analogy, each represented by its own argumentation scheme (Walton 2010; Walton 2012). This was very puzzling at first, because normally we would just like to have one scheme representing such a basic and distinctive type of argument. But it appears that there is wide disagreement on precisely what form the argument from analogy should be represented by, and below I will try to explain why in the end the hypothesis that argument from analogy has two separate schemes is not such a bad one and how this double scheme approach can be justified.

The first section of the paper uses some standard argument diagrams to explain how the first scheme represents argument from analogy as proceeding from a source case to a target case. The second section shows how this scheme applies to a famous
case of argument from analogy in philosophy. The third section introduces the second argumentation scheme, based on comparing factors in two cases. The fourth section shows how factors are weighed in systems of case-based reasoning. The fifth section presents a famous case of argument from analogy in legal rhetoric. The sixth section models a notion of similarity using script-based technology from artificial intelligence. The last section provides conclusions on how to evaluate argument from analogy.

2.1 The First Scheme

The following scheme (Walton et al. 2008, p. 315) represents what is probably the most widely accepted version of the scheme for argument from analogy advocated in the logic textbooks and other relevant sources. C_1 and C_2 represent two cases.

- **Similarity Premise:** Generally, case C_1 is similar to case C_2.
- **Base Premise:** A is true (false) in case C_1.
- **Conclusion:** A is true (false) in case C_2.

This scheme requires that in order for something to qualify as an argument from analogy it must have one premise asserting that there is a similarity between two cases. A second requirement is that a proposition A must hold in the first case, or must be a conclusion that can be drawn in the first case. The conclusion drawn by the argument from analogy is that that A also holds in the second case. This version of the scheme for argument from analogy is the one used in the textbook (Walton 2006, p. 96).

The above version of the scheme conveys the basic idea behind it very well, but its ease of applicability to real cases can be improved (as will be shown below) by modifying it slightly. In the sequel, we will use this modified version.

- **Base Premise:** A situation is described in C_1.
- **Derived Premise:** A is plausibly drawn as an acceptable conclusion in case C_1.
- **Similarity Premise:** Generally, case C_1 is similar to case C_2.
- **Conclusion:** A is plausibly drawn as an acceptable conclusion in case C_2.

It doesn’t matter too critically which scheme you use. Using either one is better than using none at all. Whether a conclusion is plausibly drawn from a case depends on the audience to whom the argument was supposedly directed. The modified version brings out better how the derived premise is drawn as a conclusion by the audience from the source case. This modification makes the base premise slightly more complex and wordy, but as the reader will shortly see, it fits cases in a more natural way. Let us henceforth call this modified scheme the basic scheme for argument from analogy.

It is part of every argumentation scheme that it must have a matching set of critical questions that can be used to probe into weak parts of the argument of the type represented by the scheme. The following set of critical questions according to the account given (Walton et al. 2008, p. 315) matches the basic scheme for argument from analogy.
Argumentation Schemes for Argument from Analogy

CQ1: Are there respects in which C1 and C2 are different that would tend to undermine the force of the similarity cited?

CQ2: Is A the right conclusion to be drawn in C1?

CQ3: Is there some other case C3 that is also similar to C1, but in which some conclusion other than A should be drawn?

The first critical question relates to differences between the two cases that could detract from the strength of the argument from analogy, but respects in which two cases are similar could also be used to support the argument from analogy. The second critical question rather nicely paves the way to indicating why the reformulated version of the scheme is an improvement. A third critical question is associated with a familiar type of counterargument called the argument from counter-analogy. The function of this critical question is to suggest doubt that could lead possibly to a plausible counterargument that could be used to attack the original argument.

It will also help us to use the standard terminology in the literature on argument from analogy to talk about the structure of argument from analogy.

In the argumentation scheme above, the original case C1 used to set up the argument from analogy is called the source case. The case C2 to which the situation in the first case is compared is called the target case. How argument works as a transfer of data from one case through an argument to another case is graphically shown in Fig. 2.1.

In Fig. 2.2 we see the characteristic movement from one case to another that is the basic mechanism of argument from analogy. But the structure of the argument as a sequence of reasoning where the basic scheme links the premises to the conclusion has not been revealed yet.

Fig. 2.2 shows how argument from analogy, and also argument from counter-analogy poised to attack an argument from analogy that was originally set forth, can be visually represented using an argument diagram. In this diagram the propositions composing the premises and conclusion are shown in text boxes, and the inferential link leading from a premise or a set of premises to a conclusion is drawn by an arrow leading to the conclusion on a set of lines leading to the premises. In the intersection
of these lines there is a node representing the argument itself, which is shown on the diagram containing annotation representing the name of the argumentation scheme.

The diagram has been drawn in the style of an argument map drawn with the Carneades Argumentation System, where every argument is represented as a pro or con argument. A pro argument has a plus sign in its argument node while a con argument has a minus sign in its argument node. Accordingly, in Fig. 2.2, the argument from analogy at the top is represented as a pro argument supporting conclusion on the right. The argument at the bottom is represented as a con argument that attacks the conclusion of the prior argument.

It is often said in argumentation studies that there are three basic ways an argument can be attacked. You can attack one or more of the premises, you can attack the conclusion, or you can attack the inferential link between the premises and conclusion. In this instance the argument from counteranalogy is used to argue that the conclusion of the prior argument from analogy is not acceptable. The type of attack represented in Fig. 2.2 is of the second type where the attack is against the conclusion of the prior argument.

2.2 The Violinist Example

Possibly the most famous use of argument from analogy argument from analogy in twentieth-century philosophy was the violinist example of Thomson (1971, pp. 48–49), quoted below.

You wake up in the morning and find yourself back to back in bed with an unconscious violinist. A famous unconscious violinist. He has been found to have a fatal kidney ailment, and the Society of Music Lovers has canvassed all the available medical records and found that you alone have the right blood type to help. They have therefore kidnapped you, and last night the violinist’s circulatory system was plugged into yours, so that your kidneys...
A situation is described in the violinist case (the source case).

The conclusion that the violinist should have the right to unplug himself is drawn in the source case.

The pregnant woman should have the right to terminate her pregnancy.

The pregnant woman case is similar to the violinist case.

This argument was deployed by Thomson to support the thesis that a woman should have the right to terminate her pregnancy, by arguing that the person in the example should have the right to unhook the violinist. The basis of the argument is that the situation of the violinist is similar to the situation of a pregnant woman. The conclusion that will plausibly be drawn by anyone presented with the situation of the violinist, as Thomson rightly supposed, is that the person in the example should have the right to unplug himself from the violinist, even though the violinist will die as a result. But since this source case is similar to the target case of a woman who is pregnant, the conclusion suggested in the target case is that a pregnant woman may terminate her pregnancy, even though the fetus will die as a result.

How the refined version of the basic scheme for argument from analogy applies to the violinist argument can be shown visually in Fig. 2.3.

There are many ways to support or attack this argument. Some might want to extend it further by claiming that it justifies abortion. However, this particular issue has been so widely and hotly disputed that it also turns on how the term “abortion” is defined. The pro-choice side defines it as removal of the fetus whereas the pro-life side defines it as the killing of a person. So there are all kinds of controversial counterargument moves surrounding this case, but this paper is not the place to comment on these. Nevertheless, the case can be used to illustrate how some types of arguments from analogy work, precisely because it is a powerful and clever argument, and probably the best-known use of argument from analogy in recent philosophy.

There are many ways to support or attack Thomson’s argument in the huge literature it provoked, but that is not our subject here. All we need to observe is that CO₂ is possibly the critical question that an audience who is not so enthusiastically pro-choice or pro-life would be most naturally inclined to raise. In the source case the violinist and the person to whom he was attached are presumed to be unrelated, while in the abortion case the woman and the fetus are arguably related. There is
also another aspect of the argument to be careful about. Because it is true in the
source case that the person in the example was kidnapped and so did nothing him-
self to cause the violinist to be attached to him, the argument from analogy is only
applicable to cases where the woman had no choice about becoming pregnant, for
example, cases of rape. This narrowing of the range of the argument detracts con-
siderably for the weight of its support for the conclusion that abortion should be
generally acceptable if a woman chooses it.

From a point of view of argumentation theory, the most interesting aspect of the
example is how the notion of similarity in the similarity premise can be defined or
analyzed. I have previously put forward a theory that provides an answer to this
question, but before introducing it, let’s go on to consider another very different but
equally interesting kind of example.

2.3 The Second Scheme

The second scheme proposed to model analogical argument is the dominant one in
the logic textbooks. It is advocated in the two most widely used logic textbooks. It
treats the argument from analogy as an inductive form of argument that requires
no reference to similarity. In this respect, it can be sharply contrasted with the first
scheme.

Copi and Cohen (1990, p. 358) offer the example of a conjecture on whether the
planets Saturn, Jupiter, Mars, Venus and Mercury, might have living creatures on
them. This example is an old one that has been superseded by the advance of sci-
ence, but it is at least clear enough to be used to try to grasp how Copi and Cohen’s
form of analogical argument is supposed to fit some more or less realistic case.
The premises are the observations of similarities between these planets and earth.
All these planets revolve around the sun, collect light from the sun, revolve around
their axis, have a succession of day and night, and so forth. They all share all these
characteristics with planet Earth. There are also certain respects in which they differ
from Earth. Some of them revolve around their axis in a manner like Earth, while
others do not. Some have moons, while others do not. According to the example,
the conclusion drawn from these similarities, despite the differences, is that it is
reasonable to think that these planets may, like Earth, exhibit the habitation of vari-
ous orders of living creatures.

To represent the structure of argument from analogy in this example Copi and
Cohen (1990, p. 360) offer the following form they call analogical argument.

Entities a, b, c, d all have the attributes P and Q.

a, b, c all have the attribute R.

Therefore d probably has the attribute R.

Copi and Cohen (1990, p. 357) state that arguments of this form are inductive,
not deductive. They (pp. 363–365) offer six criteria for appraising analogical argu-
ments. Four are worth mentioning here: the number of entities compared, the num-
ber of respects in which the things compared are said to be analogous, the number
of disanalogies or points of differences between the entities compared and the entity in the conclusion, and whether the analogies are relevant.

Let’s try to see how their form of argument fits their planets example. Start with the conclusion. Earth fits in for the variable \(d \), and \(R \) means having habitation of living creatures, since the conclusion is the statement that Earth exhibits the habitation of various orders of living creatures. But that is not the conclusion. As noted above, the conclusion is the statement that it is reasonable to think that these other planets may, like Earth, exhibit the habitation of various orders of living creatures. How the form fits the example is unclear.

Hurley (2003, p. 469) offers the following structure to represent the form of argument from analogy.

Entity \(A \) has attributes \(a, b, c \) and \(z \).

Entity \(B \) has attributes \(a, b, c \).

Therefore, entity \(B \) probably has \(z \) also.

This format of this structure for argument from analogy is different from the one offered by Copi and Cohen (1990), but the motivating idea behind it seems to be pretty much the same. Hurley (2003) also classifies argument from analogy as an inductive form of argument. Also in a manner quite similar to Copi and Cohen’s approach, Hurley (2003, pp. 469–470) offers six criteria for appraising analogical arguments: (1) relevance of the similarities, (2) number of similarities, (3) nature and degree of disanalogy, (4) number of primary analogues, (5) diversity among the primary analogues, and (6) specificity of the conclusion.

Hurley (2003) illustrates these criteria using with a leading example. In this example a woman called Lucy is deciding on which new car to buy. She decides in favor of the Chevrolet because she wants good gas mileage and she has observed that her friend Tom has a new Chevrolet and it gets good gas mileage. But some other similarities might be irrelevant. Both cars have a padded steering wheel, vinyl upholstery, tinted windows and white paint. Additional similarities which would support the argument from analogy might include such things as the weight of the car, whether it has an aerodynamic body, and the kinds of tires that are on it. Differences between the two cars might be that Tom’s car has overdrive but Lucy’s does not, or that Lucy’s car is equipped with a turbocharger and Tom’s is not. The number of analogues might include additional cases known to Lucy. Three of her friends drive cars similar to Tom’s and all three get good gas mileage. The factor of diversity among the cases cited is illustrated by the example of Lucy’s four friends who all do their driving on level streets in a cautious manner that minimizes fuel consumption. The sixth criterion of specificity of the conclusion is less easy to explain, but what Hurley is telling us is that we have to pay attention to the way the conclusion is stated because a more specific conclusion will be harder to prove and easier to falsify than one that is less specific.

How Hurley’s (2003) proposed form of the argument from analogy fits his example is clearer. The conclusion is the presumably the statement that if Lucy buys a Chevrolet, this car will get good gas mileage. According to Hurley (2003, p. 470), Lucy’s conclusion is that her car will get good gas mileage, but technically it is not her car until she buys it. The argument is also an instance of goal-directed decision-
making on what to do under conditions of uncertainty. The argument supporting this conclusion is that Tom’s Chevrolet (assumed to share many attributes with the one Lucy will buy), has the attribute of good gas mileage. The variable B represents the car Lucy is considering buying, and the variable z represents the attribute of getting good gas mileage. The example can then be expanded to take other Chevrolet owners in to account. If they get good mileage this evidence supports the argument from analogy. If there are some Chevrolets that do not get good gas mileage, this evidence undermines (weakens) the argument from analogy.

For purposes of ease of applicability to cases, I would say that Hurley’s version is an improvement on Copi and Cohen’s (1990). But the main thing we need take from these observations is that the two leading logic textbooks both present a fundamentally similar account of the form of the argument from analogy. Both have this same sort of underlying structure as arguments, which can be formulated succinctly as a rule of inference. To grasp the rule of inference begin with the instance of it in Hurley’s example. If Lucy’s car shares a set of properties with other Chevrolets, and the other Chevrolets also exhibit some new property not included in the original set, then Lucy’s car is likely to have this new property as well. The general rule of inference can now be formulated as follows: if one designated entity shares a set of properties with other entities, and the other entities also exhibit some new property not included in the original set, the designated entity is likely, on a balance of considerations, to have this new property as well.

The most important thing to notice about this way of representing the logical form of argument from analogy is that it makes no reference to the notion of similarity. The textbook accounts make argument from analogy seem highly objective. It looks like it represents a type of argument that can be evaluated in a scientific and objective manner using inductive reasoning to count up the properties shared by a set of entities to provide positive evidence supporting the argument from analogy and subtract the negative evidence of entities that fail to share common properties. There is no need for students to ask embarrassing questions about similarity.

2.4 Weighing Factors Using the Second Scheme

Now we turn to the second scheme for argument from analogy. The problem with this scheme, as set forth in the standard textbook treatments, is that it is unclear in many respects how it fits real examples, and hence trying to apply schemes offered in the textbooks was somewhat confusing. Luckily this scheme has been formulated in a simpler way that is more useful. Guarini (2004, p. 161) offered a scheme for argument from analogy that he calls the core scheme, where a and b are individual objects.

Premise 1: a has features f_1, f_2, \ldots, f_n.
Premise 2: b has features f_1, f_2, \ldots, f_n.
Conclusion: a and b should be treated or classified in the same way with respect to f_1, f_2, \ldots, f_n.

It would seem plausible that the features f_1, f_2, \ldots, f_n can be treated as representing the factors that were discussed above in relating case-based reasoning to the second scheme. The Chevrolet case we looked at from Hurley showed how the second scheme is applied to cases by identifying pro and contra factors, factors in which the two cases at issue are similar or different. In the discussion above we already identified the rule underlying this scheme. The rule basically states that the argument from analogy is supported by factors both cases share, but at the same time the argument from analogy is undermined by factors that both cases fail to share. This rule is fine as far as it goes, but the problem is that it is not just counting up of the factors that make the argument from analogy weaker or stronger. In addition some level of importance or weight has to be attached to each factor. In case-based reasoning, the more a factor is “on point” (relevant), the greater weight it carries. Any factor that is irrelevant carries no weight.

The methods of evaluating an argument from analogy in standard case-based reasoning (CBR) uses respects in which two cases are similar or different called dimensions and factors. The HYPO system (Ashley 2006) uses dimensions. A dimension is a relevant aspect of the case that can take a range of values that move along the scale with values that support one side on a disputed issue at one end and the opposed party at the other end. CATO is a simpler CBR system (Aleven 1997) that uses factors.

Factors in Hurley’s (2003) case of Lucy buying the car would include the following: the model of car, the size of the motor, having overdrive, having a turbocharger, the weight of the car, what kinds of tires are on the car, having a padded steering wheel, having tinted windows, and paint color. Some factors are relevant while others are not. Factors can also be seen as arguments favoring one side or the other in relation to the issue being disputed. Having more relevant factors in common between the source case and the target case supports the argument from analogy. Having more relevant factors not in common between the source case and the target case detracts from the argument from analogy.

Factors can also be seen as arguments favoring one side or the other in relation to the issue being disputed. On this approach, argument from analogy is seen as a defeasible form of argument in which pro factors represents similarities that support the argument while con factors represent dissimilarities undermine or detract from the argument. Typically in argument from analogy some factors support the argument, while other factors undermine it. Then to weigh the strength of the argument from analogy, we have to weigh the pro factors against the con factors. To do this numerically we have to attach a positive or negative number to each factor providing a measure of how relevant that factor is one way or the other. If we could use numbers of this sort to calculate the strength of an argument from analogy, the argument could rightly be classified as inductive, as they advocate. But if this numerical approach does not seem promising, there is also another approach. On this approach, argument from analogy can be seen as dialectical.

Typically, in this kind of format, we have an argument from analogy that supports a claim A made by one side, and then on the other side an opposed argument from analogy that supports claim not-A. To comparatively weigh up the strength of
the one argument as compared to the strength of the opposed argument, we have to bring in factors that identify the respects in which one case is similar to the other, and have some device for estimating how similar one is to the other by attaching weights to similarity. But there is always the problem of how misleading it might be to attach numbers to the weight of importance each factor should have in a given case. There may be a way we can use argumentation methods to solve this problem however. We can get a clue how it should work by looking at CBR.

HYPO evaluates arguments from analogy in a three-step method called three-ply argumentation (Ashley 1988, p. 206), which can also be modeled as a series of moves in a formal dialogue. At the first move, the proponent puts forward an argument from analogy by finding a comparable past case in which the outcome closely matches that of the proponent’s thesis because the two cases share one or more factors. At the second move, the respondent can reply to the original argument from analogy in one of the following ways, corresponding to critical questions matching the scheme for argument from analogy. She can reply by finding a counter-analogy, a past case that matches the current case but which has the opposite outcome. Another reply is to “distinguish” the case (as this move often called) by pointing to factors present in the new case that are absent in the previous one. At the third move, the proponent can reply in one of several ways. These might include distinguishing counterexamples, pointing out additional factors, or citing other cases showing that the respondent’s attack does not really rebut his argument from analogy. The three-ply argumentation could be used to effectively set up the pre and post conditions for a formal dialogue model of a critical discussion in which one type of move is the bringing forth of an argument from analogy by citing factors common to the source case and the target case, and another type of move allows an appropriate critical response of the kinds outlined above.

2.5 The Silkwood Case

The next example is a use of argument from analogy by attorney Gerry Spence in the case of Silkwood v. Kerr-McGee Corporation. Karen Silkwood was a technician who had the job of grinding and polishing plutonium pins used to make fuel rods for nuclear reactors. She was active in union activities and had investigated health and safety issues at the plant. She had testified before an atomic energy commission that Kerr-McGee had violated safety regulations. Tests in 1974 showed that she had been exposed to dangerously high levels of plutonium radiation. High levels of radioactive contamination were found in her apartment. After she died from radiation poisoning, her father brought an action against Kerr-McGee in which the Corporation was held to be at fault for her death on the basis of strict liability. According to strict liability law, a person can be held accountable for the harmful consequences of some dangerous activity he was engaged in, without having to prove that he was aware of or intended the outcome, or even that he was negligent. The standard example is that if the zookeeper has a dangerous lion in a cage, if the
Systematic Approaches to Argument by Analogy
Ribeiro, H.J. (Ed.)
2014, XII, 295 p. 26 illus., 3 illus. in color., Hardcover
ISBN: 978-3-319-06333-1