Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>What Is a Circulating Fluidized Bed Boiler?</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Features of a Circulating Fluidized Bed Boiler</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Description of the Boiler</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Advantages of Circulating Fluidized Bed Boilers</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Technology Choice</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Technological Options for Generation of Energy from Solid Fuels</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Carbon Capture by CFB</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Hydrodynamics</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Regimes of Fluidization</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Packed Beds</td>
<td>20</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Bubbling Fluidized Beds</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Slugging</td>
<td>25</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Turbulent Beds</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Fast Fluidized Bed</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Characteristics of Fast Beds</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Transition to Fast Fluidization</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Transition from Bubbling to Fast Bed</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Transition from Pneumatic Transport to Fast Bed</td>
<td>34</td>
</tr>
<tr>
<td>2.2.5</td>
<td>The Flow Regime Diagram</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of Fast Beds</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Axial Voidage Profile</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Lateral Distribution of Voidage</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Gas–Solid Mixing</td>
<td>45</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Gas–Solid Slip Velocity</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Dispersion</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>46</td>
</tr>
</tbody>
</table>
3 Heat Transfer

3.1 Gas-to-Particle Heat Transfer

3.1.1 Gas-Particle Heat Transfer Equations

3.1.2 Heating of Gas and Solids in the Fast Bed

3.2 Bed-to-Wall Heat Transfer

3.2.1 Mechanism of Heat Transfer

3.2.2 Experimental Observations

3.2.3 Theory

3.2.4 Effect of Vertical Fins on the Walls

3.3 External Fluid Bed Heat Exchanger

3.3.1 Bed-to-Tube Heat Transfer Coefficient in Bubbling Beds, \(h_0 \)

3.3.2 Tube-to-Steam Heat Transfer Coefficient, \(h_i \)

3.4 Heat Transfer in Commercial Size CFB Boilers

3.4.1 Heat Transfer to the Walls of Commercial CFB Boilers

3.4.2 Heat Transfer to Surfaces Immersed in Fast Beds

3.4.3 Heat Transfer Variation along the Furnace Height

3.5 Load Control and Part-Load Operations

3.5.1 Load Control in CFB Boilers

3.5.2 Part-Load Operation

3.5.3 Load Control Options

3.6 Heat Transfer in Supercritical Boilers

3.6.1 Circumferential Distribution of Heat Transfer Coefficient

3.7 Heat Transfer in Cyclone

References

4 Combustion

4.1 Stages of Combustion

4.1.1 Heating and Drying

4.1.2 Devolatilization

4.1.3 Devolatilization and Volatile Combustion

4.1.4 Char Combustion

4.1.5 Communication Phenomena During Combustion

4.2 Combustion Process in CFB Boilers

4.2.1 Burning Rate of a Single Coarse Char Particle in a Fast Bed

4.2.2 Feed Stock Characterization

4.2.3 Heat Release Profile
4.3 Design and Performance Modeling of CFB Combustors 115

4.3.1 Combustion Temperature 115
4.3.2 Grate Heat Release Rate 116
4.3.3 Effect of Fuel 116
4.3.4 Performance Modeling 117

References 117

5 Emissions 121

5.1 Air Pollution 124
5.1.1 Formations of Regional Pollutants 124
5.1.2 Effects 125
5.1.3 Global Warming and Climate Change 125
5.1.4 Emission Standard 127

5.2 Sulfur Dioxide Emission 127
5.2.1 Chemical Reactions 127
5.2.2 Reactions on Single Sorbent Particles 132
5.2.3 Reactivity of Sorbents 134
5.2.4 Sulfur Capture in a CFB Boiler 137
5.2.5 Selection of Sorbent 141

5.3 Nitrogen Oxide Emission 143
5.3.1 Source of NO\textsubscript{X} 144
5.3.2 Methods of Reduction of NO\textsubscript{X} Emission 145
5.3.3 NO\textsubscript{X} Emission from CFB Boilers 146

5.4 Nitrous Oxide Emission 147
5.4.1 Mechanism of Formation of N\textsubscript{2}O in CFB 147
5.4.2 Effects of Operating Parameters 148
5.4.3 Reduction of N\textsubscript{2}O 149

5.5 Carbon Emissions 149
5.5.1 Carbon Monoxide 149
5.5.2 Carbon Dioxide 149

References 151

6 Design Considerations 155

6.1 Stoichiometric Calculations 158

6.2 Heat and Mass Balance 158
6.2.1 Heat Balance 159
6.2.2 Mass Balance 164
6.2.3 Division of Solid Stream (Bed Ash vs. Fly Ash) 164
6.2.4 Control of Particle Size Distribution in Bed 166

6.3 Furnace Design 168
6.3.1 Furnace Cross Section 170
6.3.2 Width and Depth Ratio 172
6.3.3 Furnace Openings 173
6.4 CFB Boiler Configuration 178
 6.4.1 CFB Design Without External Heat Exchanger 178
 6.4.2 CFB Design with External Fluid Bed
 Heat Exchanger (FBHE) 180
 6.4.3 Design with Internal Fluid Bed Heat Exchanger .. 181
 6.4.4 CFB Design Without Cyclone 182
 6.4.5 Cooled Cyclone Versus Hot Cyclone 182
6.5 Design of Heating Surfaces 183
 6.5.1 Disposition of Heating Surfaces 185
 6.5.2 Effect of Fuel Type 186
 6.5.3 Biomass Fired CFB Boiler 187
 6.5.4 Waste Fired CFB Boiler 188
 6.5.5 Heat Absorption in External Heat Exchanger (EHE) 188
 6.5.6 Heat Absorption in the Furnace and Back pass
 of the Boiler 189
 6.5.7 Energy and Mass Balance Around CFB Loop 192
6.6 Example of Thermal Design of a CFB Boiler 195
References .. 198

7 Gas–Solid Separators 201
 7.1 Centrifugal Separators 204
 7.1.1 Types of Cyclone 204
 7.1.2 Theory 207
 7.1.3 Critical Size of Particles 208
 7.1.4 Overall Versus Grade Efficiency of Separation 210
 7.1.5 Pressure Drop Through Cyclone 211
 7.1.6 Re-Entrainment of Solids 212
 7.1.7 Cyclones for CFB Boilers 214
 7.1.8 Cyclone Geometry 216
 7.1.9 Design Steps 216
 7.2 Inertial Separators 220
 7.2.1 Features and Types 220
 7.2.2 Design Steps 225
References .. 226

8 Design of CFB Components 229
 8.1 Types of Non-mechanical Valves 230
 8.1.1 Principle of Operation 231
 8.2 Design of L-Valve 235
 8.2.1 Maximum Solid Flow Rate Through L-Valve 237
 8.2.2 Practical Considerations 237
 8.3 Design of Loop Seal 238
 8.3.1 Pressure Balance 238
 8.3.2 Size of Loop Seal 239
8.4 Grate or Fluidizing Air Distributor ... 242
 8.4.1 Types of Distributors ... 242
 8.4.2 Design Methods ... 244
 8.4.3 Practical Considerations .. 248
References ... 252

9 Management of Solid Residues ... 255
 9.1 Nature of Solid Wastes .. 255
 9.1.1 Amount of Waste .. 257
 9.1.2 Waste Characteristics ... 257
 9.2 Utilization of Wastes ... 263
 9.2.1 Wastes Without Spent Sorbent ... 264
 9.2.2 Wastes Containing Spent Sorbents ... 267
 9.3 Disposal of Wastes... 269
 9.3.1 Conditioning of Wastes ... 269
 9.3.2 Landfills ... 271
 9.3.3 Leachate ... 272
 9.3.4 Water Requirements for Conditioning ... 273
 9.3.5 Calcium Sulfide in Solid Wastes .. 274
References ... 275

10 Material Issues .. 277
 10.1 Material Selection Criteria ... 277
 10.1.1 Pressure Part Materials ... 278
 10.2 Commonly Used Materials ... 286
 10.2.1 Carbon and Alloy Steels ... 286
 10.2.2 Refractory and Insulations .. 289
 10.2.3 Expansion Joints ... 301
 10.3 Materials-Related Problems .. 302
 10.3.1 Lower Combustor .. 302
 10.3.2 Water-Cooled Cyclones ... 303
References ... 303

11 Operation and Maintenance Issues ... 305
 11.1 Introduction ... 305
 11.2 Degradation of Boiler Components .. 306
 11.2.1 Erosion Issues in CFB Boilers .. 306
 11.2.2 Corrosion Issues in CFB Boilers ... 315
 11.3 Refractory Failure ... 323
 11.4 Maintenance Issues .. 326
 11.4.1 Preventive and Remedial Measures for Fireside Corrosion 327
 11.4.2 Preventive Maintenance for Refractory 327
Circulating Fluidized Bed Boilers
Design, Operation and Maintenance
Basu, P.
2015, XV, 366 p. 119 illus., 8 illus. in color., Hardcover
ISBN: 978-3-319-06172-6