Low molecular weight and polymeric molecules can be constrained under the
conditions of geometrical confinement having different dimensionalities:

(i) in nanometer thin layers or self-supporting films (one-dimensional),
(ii) in pores or tubes having nanometric diameter (two-dimensional), or
(iii) as micelles embedded in a matrix (three-dimensional), or as nanodroplets.

Within the last two decades, their dynamics under such conditions has been the
focus of intense worldwide research activities. Evidence exists that the overall
molecular mobility results from a subtle balance between surface and confinement
effects. Due to attractive guest/host interactions, the former causes a slowing down
of the molecular dynamics, which can be compensated by an appropriate surface
coating. The latter is characterized by an increase in the mobility, which becomes
more pronounced with decreasing external length scale, e.g., film thickness or pore
diameter. In this case, modification of the host/guest interaction by surface treat-
ment has negligible or no effect. Broadband Dielectric Spectroscopy (BDS) plays
an essential role in these studies. It is the intention of this second volume in the
series “Advances in Dielectrics” to summarize the state of the art in this emerging
field, which is also of fundamental importance for nanotechnology.

Friedrich Kremer
Dynamics in Geometrical Confinement
Kremer, F. (Ed.)
2014, VIII, 366 p. 184 illus., 116 illus. in color., Hardcover
ISBN: 978-3-319-06099-6