Part I Laser–Matter Interaction Phenomena

1 Ultrafast Laser Induced Confined Microexplosion:
A New Route to Form Super-Dense Material Phases 3
Ludovic Rapp, Bianca Haberl, Jodie E. Bradby,
Eugene G. Gamaly, Jim S. Williams and Andrei V. Rode
1.1 Introduction ... 4
1.2 Energy Density in Confined Ultra-Short Laser Interaction
with Solids .. 5
 1.2.1 Absorbed Energy Density 5
 1.2.2 Ionisation Processes .. 7
 1.2.3 Increase in the Absorbed Energy Density Due
to Modification of Optical Properties 10
 1.2.4 Energy Transfer From Electrons to Ions:
 Relaxation Processes After the Pulse 11
1.3 Shock Wave Propagation and Void Formation 13
 1.3.1 Shock Wave Generation and Propagation 13
 1.3.2 Shock Wave Dissipation 14
 1.3.3 Rarefaction Wave: Formation of Void 15
1.4 Density and Temperature in the Shock-Wave
and Heat-Wave Affected Solid 16
 1.4.1 Two Characteristic Areas in Confined
 Microexplosion ... 16
 1.4.2 Upper Limit for the Pressure Achievable
in Confined Interaction 17
 1.4.3 Ionisation Wave Propagation Towards
the Laser Beam .. 18
 1.4.4 Modelling of Macroscopic Explosions
 by Micro-Explosion .. 20
1.5 Formation of Void at Si/SiO₂ Interface 21
1.6 Summary ... 24
References ... 25
4.2 Effect of Charged Ablated Nanoparticles Long-Residing in the Ambient Gas

4.2.1 Observation of Low-Threshold Air Breakdown

4.2.2 Locations of Plasma and the Resulting Crater Morphology

4.2.3 Dimensions, Lifetime and Electrical Properties of Nanoparticles

4.2.4 Removal of Charged Particles by Application of Electric Field

4.2.5 Relaxation of Plasma in Atmospheric Air and Its Role in High Repetition Rate Micromachining

4.3 Self-Scattering of Focused Ultrashort Pulses

4.3.1 Threshold Conditions

4.3.2 Contributing Mechanisms

4.3.3 Optimization of Exposure Conditions to Eliminate the Scattering

4.4 Discussion and Conclusions

References

Part II Nanoparticles Related Technologies and Problems

5 Laser Generation and Printing of Nanoparticles

5.1 Introduction

5.2 Laser Printing of Nanoparticles and Nanoparticle Arrays

5.2.1 Laser Printing of Nanoparticles

5.2.2 Laser Fabrication of Large-Scale Nanoparticle Arrays

5.3 Resonant Electric and Magnetic Response of Silicon Nanoparticles

5.4 Generation of Silicon Nanoparticles from Bulk Silicon

5.5 Microreplication of Laser-Transferred Gold Nanoparticles/Nanomolding

5.6 Laser-Based Synthesis of Nanoparticles and Surface Modified Nanoconjugates

5.6.1 Ultrapure Nanoparticles by Pulsed Laser Ablation in Liquids

5.6.2 Surface-Functionalized Nano(Bio)Conjugates

5.7 Novel Laser-Based Conjugation Concepts

5.8 Conclusion

References
8 Photophysics of Nanostructured Metal and Metal-Contained Composite Films
Nathalie Destouches, Frank Hubenthal and Tigran Vartanyan
8.1 Introduction .. 173
8.2 Optical Properties of Noble Metal Nanoparticles 175
 8.2.1 Damping of Plasmon Excitations Localized in Metal Nanoparticles ... 176
 8.2.2 Optical Properties of Nanostructured Noble Metal Nanoparticles on Substrates 178
 8.2.3 Reflection and Transmission of Supported Metal Nanostructures .. 179
 8.2.4 Mutual Modification of Silver Nanoparticle Plasmon Resonances and Absorptive Properties of Polymethine Dye Molecular Layers on a Sapphire Surface .. 180
8.3 Preparation and Defined Manipulation of Metal and Metal Contained Film ... 182
 8.3.1 Physical Vapour Deposition ... 182
 8.3.2 Laser-Induced Growth of Metal Nanoparticles in Glassy Matrix .. 184
 8.3.3 Laser-Induced Transformations of Supported and Embedded Metal Nanoparticles Ensembles 185
 8.3.4 Reversibly Tuning the Size of Nanoparticles with Lasers ... 189
 8.3.5 Optical Methods of Forming Metallic Nanostructures on the Surface of Insulating Materials 191
8.4 Applications .. 192
 8.4.1 Metal Nanoparticles as SERS Substrates 192
 8.4.2 Exploiting Near Fields of Gold Nanoparticles for Surface Nanostructuring 193
 8.4.3 Improvement of the Thermal Stability of Silver Films via UV Illumination 194
 8.4.4 Reversible or Permanent Laser-Induced Color Marking .. 195
8.5 Conclusion .. 196
References .. 197

9 Selective Ablation of Thin Films by Pulsed Laser
Andreas Ostendorf, Evgeny L. Gurevich and Xiao Shizhou
9.1 Introduction .. 201
9.2 Thermal Penetration Depth in Laser Ablation of Films 203
9.3 Front- and Rear-Side Laser Ablation of Films 206
Part IV Bulk Micro Structuring of Transparent Materials

10 Reversible Laser-Induced Transformations in Chalcogenide- and Silicate-Based Optical Materials
 Alexander V. Kolobov, Junji Tominaga and Vadim P. Veiko

10.1 Chalcogenide Glasses and Phase-Change Alloys
 10.1.1 Reversible Photostructural Changes and Photo-Induced Anisotropy
 10.1.2 Photocrystallisation of Selenium
 10.1.3 Photo-Induced Loss of Long-Range Order

10.2 Silicate Phase-Changing Materials
 10.2.1 Glasses and Glass-Ceramics: Different Sides of the Same Coin
 10.2.2 Physical Processes of Laser-Induced Phase-Structure Modifications of Oxide Glass-Ceramics
 10.2.3 Conclusions

10.3 Applications of Laser-Induced Transformations
 10.3.1 Chalcogenides
 10.3.2 Silicates

References

11 Fs Laser Induced Reversible and Irreversible Processes in Transparent Bulk Material
 V. V. Kononenko and V. I. Konov

11.1 Introduction

11.2 Experimental Techniques
 11.2.1 Laser Bulk Treatment Conditions: Sample Scanning and Focusing
 11.2.2 Interferometric Control of Laser-Induced Processes in the Bulk of a Solid

11.3 Transient Changes in Matter
 11.3.1 Kerr Non-linearity, Non-linear Ionization and Wave Packet Control
 11.3.2 Non-linear Transformation of an Fs Beam and Radiation Losses in a Highly Non-linear Material
 11.3.3 Self-Trapped Exciton (STE) Formation
 11.3.4 Bulk Heating
11.4 Irreversible Modification of Material Structure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1</td>
<td>261</td>
</tr>
<tr>
<td>11.4.2</td>
<td>264</td>
</tr>
<tr>
<td>11.4.3</td>
<td>265</td>
</tr>
</tbody>
</table>

References 267

Part V Laser-Induced Modification of Polymers

12 A Decade of Advances in Femtosecond Laser Fabrication of Polymers: Mechanisms and Applications 271

Mangirdas Malinauskas and Saulius Juodkazis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>272</td>
</tr>
<tr>
<td>12.2</td>
<td>276</td>
</tr>
<tr>
<td>12.3</td>
<td>280</td>
</tr>
<tr>
<td>12.4</td>
<td>283</td>
</tr>
</tbody>
</table>

References 288

13 Laser Nanostructuring of Polymers 293

Nikita M. Bityurin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>293</td>
</tr>
<tr>
<td>13.2</td>
<td>294</td>
</tr>
<tr>
<td>13.2.1</td>
<td>294</td>
</tr>
<tr>
<td>13.2.2</td>
<td>298</td>
</tr>
</tbody>
</table>

References 298
Fundamentals of Laser-Assisted Micro- and Nanotechnologies
Veiko, V.p.; Konov, V.I. (Eds.)
2014, XVII, 322 p. 145 illus., 49 illus. in color., Hardcover
ISBN: 978-3-319-05986-0