Contents

1 **Introduction** .. 1
1.1 Ultracold Quantum Gases: From Mean-Field to Strong Correlations .. 1
1.2 Single-Atom- and Single-Site-Resolved Imaging in Optical Lattices .. 2
1.3 Quantum Fluctuations and Correlation Functions 3
1.4 Beyond Local Order .. 4
1.5 Excitation Spectrum and the Amplitude ‘Higgs’ Mode 4
1.6 Further Applications of Single-Atom- and Single-Site-Resolved Imaging and Control 5
References .. 6

2 **Superfluid-Mott-Insulator Transition** 11
2.1 Bose–Hubbard Model .. 11
2.2 Mott-Insulating and Superfluid States 12
2.2.1 Mott-Insulating State .. 12
2.2.2 Superfluid State .. 14
2.3 Phase Transitions in the Bose–Hubbard Model 16
2.4 Realization of the Bose–Hubbard Model
in Optical Lattices .. 18
2.4.1 Optical Lattice Potential .. 18
2.4.2 Derivation of the Tunneling and Interaction Term 19
2.4.3 Three-Dimensional Optical Lattice and Harmonic Confinement .. 22
2.4.4 Discussion .. 25
References .. 25

3 **Overview of the Experimental Procedure** 29
3.1 Two-Dimensional Degenerate Gas and Vertical Lattice 29
3.2 Horizontal Square Lattice and Adiabatic Preparation 30
Part I Single-Site-Resolved Imaging and Thermometry of Atomic Limit Mott Insulators

4 Single-Site-Resolved Imaging and Thermometry of Atomic Limit Mott Insulators

4.1 Theory for the Ground State and the Influence of a Trapping Potential

4.1.1 Eigenspectrum and Eigenstates

4.1.2 Influence of the Trapping Potential

4.2 Single-Site-Resolved Fluorescence Images

4.3 Influence of Finite Temperature and In Situ Thermometry

4.4 Summary and Conclusion

References

Part II Single-Site- and Single-Atom-Resolved Detection of Correlation Functions

5 Detection of Particle-Hole Pairs Using Two-Site Correlation Functions

5.1 Introduction to Particle-Hole Pairs and Two-Site Correlation Functions

5.2 Results in One Dimension

5.3 Results in Two Dimensions

5.4 On-Site Fluctuations and Next-Nearest Neighbor Correlations

5.5 Summary and Conclusion

References

6 Non-local Correlations in One Dimension

6.1 Non-local Order Parameters

6.1.1 Local Order Parameters and Two-Site Correlation Functions

6.1.2 Non-local Order Parameters

6.2 Non-local Order in the Bose–Hubbard Model

6.2.1 Intuitive Picture and Strong Coupling Limit

6.2.2 Analytical Results Based on Bosonization

6.2.3 Numerical Analysis

6.3 Experimental Results for the String Order Parameter

6.4 Multi-site Correlations

6.5 Summary and Conclusion

References
Probing Correlated Quantum Many-Body Systems at the Single-Particle Level
Endres, M.
2014, XVI, 165 p. 50 illus., 37 illus. in color., Hardcover
ISBN: 978-3-319-05752-1