Contents

Part I Basic Concepts

1 Stress and Strain
 1.1 Stress
 1.2 Strain
 1.2.1 Simple Shear
 1.2.2 Homogeneous and Inhomogeneous Strain
 1.2.3 Extensional and Compressional Structures
 1.2.4 Strain Ellipsoid
 1.2.5 Strains Associated with Homogeneous Deformation
 1.2.6 Pure Shear
 1.3 Flinn Diagram
 1.4 Determination of Finite Strain: Precautions
 References

2 Anisotropy of Magnetic Susceptibility
 2.1 Different Forms of Magnetization
 2.2 Anisotropy of Magnetic Susceptibility
 2.3 Equipment
 2.4 Collection of Samples
 2.4.1 Importance of Sampling in an Area
 2.5 Magnetic Anisotropy
 2.5.1 Mean Susceptibility (Km)
 2.5.2 Magnitude of Anisotropy
 2.6 Different Types of AMS Fabrics
 2.7 Plotting of Magnitude and Shape of Susceptibility Ellipsoid
 2.7.1 Jelinek Plot (Shape Plot)
 2.7.2 Plotting of the Principal Axes
 2.8 Hrouda Diagram
 References
3 Folds and Folding 35
 3.1 Fold Geometry 36
 3.2 Fold Classification 43
 3.2.1 Class 1, Convergent 43
 3.2.2 Class 2, Folds with Parallel Isogons (Similar) 45
 3.2.3 Class 3, Divergent 45
 3.3 Why Folds Develop 46
 3.4 Selection of Wavelength 48
 3.5 Zone of Contact Strain 51
 3.6 Development of Multilayer Folds 52
 3.7 Development of Sinusoidal Buckles in Experiments 54
 3.7.1 Construction of Multilayer Plasticine/Modeling Clay Models 54
 3.7.2 Biaxial Press 55
 3.8 Development of Flexural Slip Folds 59
 3.9 Development of Asymmetric Folds 65
 3.10 Development of Noncylindrical Folds 67
 3.10.1 Importance of the Culmination Point 71
 3.10.2 Interference Patterns of Simultaneously Developing Fold Complexes 72
 3.11 Development of Polyharmonic Folds 76
 3.12 Structures Developing on Fold Surfaces at Late Stages of Fold Development 81
 3.13 Superimposed Folding 85
 3.13.1 Crossing Orogenic Belts 85
 3.13.2 Successive Deformation Phases in One Orogenic Cycle 86
 3.13.3 Successive Folding During a Single Progressive Deformation 86
 3.13.4 Simultaneous Folding in Several Directions During One Deformation 87
 3.14 Interference Patterns 88
 3.14.1 Type 0: Redundant Superposition 88
 3.14.2 Type 1: Dome-basin Pattern 89
 3.14.3 Type 2: Dome-crescent-mushroom Pattern 90
 3.14.4 Type 3: Convergent-Divergent Pattern 90
 3.15 Creep 96
 3.16 Concluding Remarks 96
References 97

4 Thrust Fault 101
 4.1 Reverse and Normal Drags 102
 4.2 Classification of Thrust Faults 102
 4.2.1 Basal Decollement 107
 4.3 Flat and Ramp Model 107
 4.4 Problems with the ‘Rocky Mountain’ Thrust Model 109
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>The Kimmeridge Bay Model</td>
<td>111</td>
</tr>
<tr>
<td>4.6</td>
<td>Imbricate Thrusts</td>
<td>112</td>
</tr>
<tr>
<td>4.7</td>
<td>Development of Duplex Structure</td>
<td>114</td>
</tr>
<tr>
<td>4.8</td>
<td>Development of Decollement Upwarp Structure</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>4.8.1 Model 1</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>4.8.2 Model 2</td>
<td>117</td>
</tr>
<tr>
<td>4.9</td>
<td>Thrust Locking</td>
<td>120</td>
</tr>
<tr>
<td>4.10</td>
<td>Frontal and Oblique Fault Ramps</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>4.10.1 Formation of Oblique Fault Ramps</td>
<td>121</td>
</tr>
<tr>
<td>4.11</td>
<td>Models of Thrusting</td>
<td>123</td>
</tr>
<tr>
<td>4.12</td>
<td>Formation of Thrust Ramps</td>
<td>128</td>
</tr>
<tr>
<td>4.13</td>
<td>Development of Klippe</td>
<td>128</td>
</tr>
<tr>
<td>4.14</td>
<td>Restoration (Balancing) of Deformed Cross-Sections</td>
<td>136</td>
</tr>
<tr>
<td>4.15</td>
<td>Estimation to the Depth of Detachment</td>
<td>138</td>
</tr>
<tr>
<td>4.16</td>
<td>Step-by-Step Construction of Balanced Cross-Section</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>141</td>
</tr>
<tr>
<td>5</td>
<td>Normal Fault</td>
<td>143</td>
</tr>
<tr>
<td>5.1</td>
<td>Fault Propagation and Termination</td>
<td>143</td>
</tr>
<tr>
<td>5.2</td>
<td>Bookshelf Gliding</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Fault Dip, Displacement and Extension</td>
<td>148</td>
</tr>
<tr>
<td>5.4</td>
<td>Curvature of Faults and Associated Dilation Spaces</td>
<td>150</td>
</tr>
<tr>
<td>5.5</td>
<td>Decollement and Detachment Faults</td>
<td>156</td>
</tr>
<tr>
<td>5.6</td>
<td>Co-existence of Normal and Reverse Faults</td>
<td>156</td>
</tr>
<tr>
<td>5.7</td>
<td>Evolutionary Stages of Normal Faults</td>
<td>158</td>
</tr>
<tr>
<td>5.8</td>
<td>Models of Lithospheric Extension</td>
<td>163</td>
</tr>
<tr>
<td>5.9</td>
<td>Factors Responsible for Uplift in a Region</td>
<td>164</td>
</tr>
<tr>
<td>5.10</td>
<td>Identification of a Rift Phase by Geochemical Method</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>5.10.1 Ocean Floor Basalts</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>5.10.2 Volcanic Arc Basalts</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>5.10.3 Ocean Island Basalts</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>5.10.4 Continental Basalts</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td>Strike-Slip Fault</td>
<td>173</td>
</tr>
<tr>
<td>6.1</td>
<td>Rheological Control on the Development of Faults</td>
<td>173</td>
</tr>
<tr>
<td>6.2</td>
<td>Development of Strike-Slip Faults</td>
<td>174</td>
</tr>
<tr>
<td>6.3</td>
<td>Development of Two Sets of Faults Under Pure Shear</td>
<td>176</td>
</tr>
<tr>
<td>6.4</td>
<td>Differential Displacement Along Faults and Fault Terminations</td>
<td>177</td>
</tr>
<tr>
<td>6.5</td>
<td>Transpression and Transtension</td>
<td>178</td>
</tr>
<tr>
<td>6.6</td>
<td>Relationships Between Folds and Strike-Slip Faults</td>
<td>180</td>
</tr>
<tr>
<td>6.7</td>
<td>Oblique Fault Ramp</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>182</td>
</tr>
</tbody>
</table>
7 Simultaneous Development of Folds and Faults .. 185
 7.1 Simultaneous Development of Folds and Thrusts 186
 7.1.1 Fold Initiation with Reactivation of Early Normal Fault as Thrust 186
 7.1.2 Variation of Fold Geometry with Increasing Distance from a Thrust 194
 7.2 Thrust Initiation Later than Folding .. 195
 7.3 Simultaneous Development of Folds and Strike-Slip Faults 198
 7.4 Determination of Fault Displacement by Using a Fold Hinge Line 203
 7.5 Simultaneous Development of Folds and Normal Faults 205
 7.5.1 Normal Faults in Vicinity of a Thrust .. 205
 7.5.2 Normal Faults During a Rift Phase ... 205
 7.6 Simultaneous Development of Folds and Oblique Ramps 206
 7.7 Interference Between Simultaneously Developing Folds, Frontal and Oblique Fault Ramps 209
 7.8 Fault Reactivation During Superposed Deformation 210
References .. 212

8 Global Positioning System .. 215
 8.1 Possible Sources of Error .. 216
 8.2 Experiments with Physical Models .. 217
 8.3 Experiment ... 217
 8.4 Deformation of a Body Under Pure-Shear ... 221
 8.5 Development of Geological Structures During Internal Deformation and Translation 223
 8.6 Field Observations Versus GPS Data .. 225
 8.7 Indian Plate Movement and GPS Data ... 226
 8.8 Importance of Location of GPS Stations in an Orogenic Belt 227
References .. 229

Part II Evolution of the Himalaya

9 The Himalaya .. 233
 9.1 Tectonic Subdivisions of the Himalaya ... 235
References .. 237

10 The Foreland Basin .. 239
 10.1 Stratigraphic Succession .. 240
 10.2 Structural Features .. 246
 10.3 Results of Cross-Section Balancing .. 249
 10.3.1 Transect One ... 249
 10.3.2 Transect Two .. 250
 10.3.3 Transect Three .. 251
10.3.4 Transect Four ... 252
10.3.5 Transect Five .. 252
10.4 Possible Sources of Error 254
10.5 Development of a Foreland Basin 254
10.6 Corrections to be Applied 256
10.6.1 Case 1 .. 256
10.6.2 Case 2 .. 257
10.7 The Estimated Crustal Shortening with Reference
 to Distance from the Central Crystalline Thrust 259
10.8 Smooth Trajectory Thrust Versus Flat and Ramp Structure 260
10.9 Future Directions of Research 262
References ... 263

11 The Lower (Lesser) Himalaya 267
 11.1 Pre-Himalayan Curvature of the MBT 268
 11.2 Lithotectonic Set-Up 269
 11.3 Inverted Metamorphism 274
 11.4 Structure .. 275
 11.5 Structural Evolution of the Mandi-Karsog Pluton 280
 11.6 Structural Evolution of the Kangra Region 280
 11.6.1 The Model .. 282
 11.7 Geometrical Relationships Between Shortening,
 Displacement Along Thrust and Displacement
 Out of Tectonic Transport Plane 285
 11.8 Structural Evolution of the Simla Klippe 288
 11.9 Structural Evolution of the Uttarkashi Area 292
 11.9.1 The Model .. 293
 11.10 Structural Evolution of the Mussoorie Syncline 296
 11.10.1 The Model .. 301
 11.11 Structural Evolution of the Garhwal Syncline 306
 11.11.1 The Model .. 309
References ... 311

12 The High Himalaya ... 315
 12.1 Age of the MCT .. 316
 12.2 The Central Crystalline Rocks 317
 12.3 Metamorphism ... 319
 12.4 A Model to Explain the Younger Vaikrita Rocks
 on the Thrust Hanging Wall 320
 12.5 Structural Features Along the Satluj Valley 323
 12.6 Tectonic Evolution of the WGC 329
 12.7 Reverse (Inverse) Metamorphism 331
 12.8 Structural Evolution of the High Himalaya 333
 12.9 Tectonic Exhumation of the High Himalaya 338
References ... 339
13 The Tethys Himalaya ... 345
 13.1 The South Tibetan Detachment System 346
 13.2 Leucogranites .. 347
 13.3 Lithostratigraphy .. 347
 13.4 Structural Features .. 348
 References ... 350

14 The Ladakh Himalaya ... 353
 14.1 Tectonostratigraphy .. 354
 14.1.1 Zanskar Zone ... 354
 14.1.2 Tso Morari Crystalline Complex 357
 14.1.3 Indus Tsangpo Suture Zone 358
 14.1.4 Ladakh Plutonic Complex 359
 14.1.5 Shyok Suture Zone 360
 14.1.6 Karakoram Zone 361
 14.2 Tectonics of the Region 362
 14.3 Karakoram Fault .. 363
 14.4 Zanskar Shear Zone ... 368
 14.5 Simultaneous Development of Normal and Strike-Slip Faults ... 369
 References ... 369

15 The Model ... 373
 15.1 Pre-Himalayan Rift Tectonics 374
 15.2 Distribution of Basic Lava 375
 15.3 Acid Magmatism ... 377
 15.4 Significant Structural Features of the Himalaya 378
 15.5 A Model for Structural Evolution of the Himalaya 382
 15.6 Tectonics and Climate 385
 References ... 387

Errata to: Understanding an Orogenic Belt E1

Index ... 391
Understanding an Orogenic Belt
Structural Evolution of the Himalaya
Dubey, A.
2014, XVI, 401 p. 306 illus., 12 illus. in color., Hardcover
ISBN: 978-3-319-05587-9