Contents

Part I Preliminaries

1 Introduction ... 3
 Reference .. 5

2 Fault in Transmission Cables and Current Fault
 Location Methods .. 7
 2.1 Faults in Transmission Cables 7
 2.2 Current Fault Location Methods 8
 2.2.1 Offline Methods .. 8
 2.2.2 Online Methods ... 9
 References ... 15

3 Problem Formulation and Thesis Outline 19
 3.1 Thesis Outline ... 20

Part II Fault Location on Crossbonded Cables Using
 Impedance-Based Methods

4 Series Phase and Sequence Impedance Matrices
 of Crossbonded Cable Systems .. 25
 4.1 The Single-Core Case Study Cable 25
 4.2 Series Impedance Matrix ... 27
 4.2.1 Impedance Matrix for a Crossbonded Cable 30
 4.3 Fault Loop Impedance on Crossbonded Cable Systems .. 31
 4.3.1 Double-sided Infeed ... 35
 4.3.2 Long Cables ... 36
 4.3.3 Trefoil Formation ... 37
 4.3.4 Fault Loop Impedance as Function of Cable
 and Cable System Parameters 37
7 The Use of the Single and Two-Terminal Fault Location Method on Crossbonded Cables

7.1 Fault Location on a Crossbonded Cable System Using Travelling Waves

7.1.1 Case Study I (Fault I)

7.1.2 Case Study II (Fault II)

7.1.3 Conclusions on the Use of the Single and Two-Terminal Fault Location Methods on Crossbonded Cables

References

8 Parameters Influencing a Two-Terminal Fault Location Method for Fault Location on Crossbonded Cables

8.1 The Dispersive Media Effect and Cable Length

8.1.1 Wave Velocity as Function of Signal Frequency Content

8.2 Busbar Surge Impedance

8.3 Fault Wave Reflection and Refraction

8.3.1 Case A

8.3.2 Case B

8.3.3 Case C

8.3.4 Case D

8.4 Fault Inception Angle

8.5 Fault Arc Resistance

8.6 Sensitivity of the Coaxial Modal Wave on Cable and Cable System Parameters

8.6.1 Coaxial Modal Wave Velocity

8.6.2 Attenuation of the Coaxial Modal Wave

8.7 Determination of the Modal Velocities

8.8 Measuring Transformers

8.8.1 Capacitive Voltage Transformers

8.8.2 Inductive Voltage Transformers

8.8.3 Inductive Current Transformers

8.8.4 Rogowski Coils

8.8.5 Summary

8.9 Fault Locator Sampling Frequency

8.10 Summary

References

9 Fault Location on Different Line Types Using Online Travelling Wave Methods

9.1 Hybrid Lines

9.1.1 Fault Location on a Two Segment Hybrid Line

9.1.2 Identification of the Faulted Line Segment

References
9.2 Fault Location on Cable Systems with Solidly Grounded Sections, Transposed Cables and Cables with Open Sheath

9.3 Submarine Cables

9.4 Summary

9.5 Choice of Fault Location Method

- References

10 Travelling Wave-Based Field Measurements for Verification of Fault Location Methods for Crossbonded Cables

10.1 Measuring Strategy

- 10.1.1 Equipment Accuracy

10.2 Modal Decomposition of the Anholt Land Cable Section

- 10.2.1 The Influence of the Position of the ECC on the Modal Velocity

10.3 Simulation Model

10.4 Coaxial Wave Velocity Determination

10.5 Case Study Results

- 10.5.1 Summary

- References

11 The Wavelet Transform and Fault Location on Crossbonded Cable Systems

11.1 The Wavelet Transform

- 11.1.1 Scale and Frequency

- 11.1.2 The Wavelet Transform for Detection of Singularity

11.2 Automatic Fault Location on Crossbonded Cables Using the Wavelet Transform

- 11.2.1 Automatic Fault Location Strategy

- 11.2.2 Case Studies

- 11.2.3 Summary

- References

12 Development of a Fault Locator System for Crossbonded Cables

12.1 Selection of Equipment

12.2 Software Development

- 12.2.1 Producer Loop

- 12.2.2 Consumer Loop

- 12.2.3 System Verification

- 12.2.4 Fault Location on Hybrid Lines

- 12.2.5 Summary

- Reference
Part IV Conclusions

13 Conclusion .. 197
 13.1 Summary of the Thesis ... 197
 13.1.1 Summary of the Impedance-Based Fault Location Methods for Crossbonded Cables 198
 13.1.2 Summary of Fault Location on Hybrid Lines Using Impedance-Based Methods 198
 13.1.3 Summary on Fault Location Using Neural Networks .. 199
 13.1.4 Summary of the Travelling Wave-Based Fault Location Methods for Crossbonded Cables 199
 13.2 Contributions .. 203
 13.3 Future work .. 203
 13.3.1 Signal Conditioning ... 203
 13.3.2 Practical Installation 204
 13.3.3 Instrument Transformer 204
 13.3.4 Wavelet-Based Trigger Mechanism 204

Appendix A: Impedance-Based Fault Location Measurement Results .. 205

Appendix B: Power System Components Used in the Thesis 209

Appendix C: Seven-Step Impedance Measuring Method 215

Appendix D: Single Line Diagram of GIS-Station Karstrup 219

About the Author .. 221
Online Location of Faults on AC Cables in Underground Transmission Systems
Jensen, C.F.
2014, XXI, 221 p. 145 illus., 76 illus. in color., Hardcover
ISBN: 978-3-319-05397-4