Contents

1 Introduction .. 1
 1.1 How the Book is Organized. 3
 1.1.1 From Metrology to Digital Data 3
 1.1.2 Uncertainty, Information, and Learning Mechanisms . . . 4
 1.1.3 Randomized Algorithms 5
 1.1.4 Robustness Analysis 6
 1.1.5 Emotional Cognitive Mechanisms for Embedded Systems 7
 1.1.6 Performance Estimation and Probably Approximately Correct Computation . . 7
 1.1.7 Intelligent Mechanisms in Embedded Systems 8
 1.1.8 Learning in Nonstationary and Evolving Environments 9
 1.1.9 Fault Diagnosis Systems 10

2 From Metrology to Digital Data 11
 2.1 Measure and Measurements 11
 2.1.1 The Measurement Chain 12
 2.1.2 Modeling the Measurement Process 15
 2.1.3 Accuracy ... 16
 2.1.4 Precision .. 18
 2.1.5 Resolution 19
 2.2 A Deterministic Versus a Stochastic Representation of Data 20
 2.2.1 A Deterministic Representation: Noise-Free Data 20
 2.2.2 A Stochastic Representation: Noise-Affected Data 21
 2.2.3 The Signal-to-Noise Ratio 22

3 Uncertainty, Information, and Learning Mechanisms 25
 3.1 Uncertainty and Perturbations 25
 3.1.1 From Errors to Perturbations 25
 3.1.2 Perturbations 26
3.2 Perturbations at the Data Representation Level ... 27
 3.2.1 Natural Numbers \mathbb{N}: Binary Natural ... 27
 3.2.2 Integer Numbers \mathbb{Z}: 2’s Complement .. 29
 3.2.3 2cp Notation .. 29
 3.2.4 Rational \mathbb{Q} and Real \mathbb{R} Numbers ... 30
3.3 Propagation of Uncertainty .. 32
 3.3.1 Linear Functions ... 32
 3.3.2 Nonlinear Functions .. 37
3.4 Learning from Data and Uncertainty at the Model Level. 38
 3.4.1 Basics of Learning: Inherent, Approximation, and Estimation Risks 38
 3.4.2 The Bias-Variance Tradeoff. ... 42
 3.4.3 Nonlinear Regression ... 45
 3.4.4 Linear Regression ... 47
 3.4.5 Linear Time-Invariant Predictive Models. ... 49
 3.4.6 Uncertainty at the Application Level .. 51

4 Randomized Algorithms .. 53
 4.1 Computational Complexity .. 54
 4.1.1 Analysis of Algorithms ... 55
 4.1.2 P, NP-Complete, and NP-Hard Problems. 57
 4.2 Monte Carlo .. 59
 4.2.1 The Idea Behind Monte Carlo .. 59
 4.2.2 Weak and Strong Laws of Large Numbers 62
 4.2.3 Some Convergence Results ... 64
 4.2.4 The Curse of Dimensionality and Monte Carlo 67
 4.3 Bounds on the Number of Samples .. 67
 4.3.1 The Bernoulli Bound .. 68
 4.3.2 The Chernoff Bound .. 69
 4.3.3 A Bound on Samples to Estimate the Maximum Value of a Function 74
 4.4 Randomized Algorithms .. 76
 4.4.1 The Algorithm Verification Problem ... 77
 4.4.2 The Maximum Value Estimation Problem 80
 4.4.3 The Expectation Estimation Problem .. 84
 4.4.4 The Minimum (Maximum) Expectation Problem 87
 4.5 Controlling the Statistical Volume of the Sampling Space 91

5 Robustness Analysis .. 95
 5.1 Problem Formalization ... 96
 5.1.1 Robustness .. 96
 5.1.2 Robustness at the Computational Flow Level 97
5.2 Robustness in the Small

5.2.1 Evaluating the Impact of Small Perturbations at the Function Output

5.2.2 Perturbations at the Empirical Risk Level

5.2.3 Perturbations at the Structural Risk Level

5.2.4 Theory Highlights on Robustness

5.3 Robustness in the Large

5.3.1 Problem Definition: The $u(\delta\theta)$ Case

5.3.2 Randomized Algorithms and Robustness: The $u(\delta\theta)$ Case

5.3.3 The Maximum Expectation Problem

6 Emotional Cognitive Mechanisms for Embedded Systems

6.1 Emotional Cognitive Structure

6.2 Automatic and Controlled Processes

6.2.1 Automatic Processes

6.2.2 Controlled Processes

6.3 Basic Functions of the Neural Emotional System

6.3.1 Amygdala

6.3.2 Long-Term Memory

6.3.3 Basal Ganglia

6.3.4 Lateral Prefrontal and Association Cortices

6.3.5 Anterior Cingulate Cortex

6.3.6 Orbital and Ventral-Medial Prefrontal Cortices

6.3.7 Hippocampus

6.4 Emotion and Decision-Making

7 Performance Estimation and Probably Approximately Correct Computation

7.1 Accuracy Estimation: Figures of Merit

7.1.1 Squared Error

7.1.2 Kullback–Leibler

7.1.3 L^p Norms and Other Figures of Merit

7.2 Probably Approximately Correct Computation

7.3 The Performance Verification Problem

7.3.1 The Performance Satisfaction Problem

7.3.2 The Figure of Merit Expectation Problem

7.3.3 The Maximum Performance Problem

7.3.4 The PACC Problem

7.3.5 The Minimum (Maximum)-Perturbed Expectation Problem
7.4 Accuracy Estimation: A Given Dataset Case

- **7.4.1 Problem Formalization**
- **7.4.2 The Bootstrap Method**
- **7.4.3 The Bag of Little Bootstraps Method**

7.5 Cognitive Processes and PACC

7.6 Example: Accuracy Assessment in Embedded Systems

8 Intelligent Mechanisms in Embedded Systems

- **8.1 Adaptation at the Power Supply Voltage and Processor Frequency Levels**
 - **8.1.1 Online DVFS**
 - **8.1.2 Offline DVFS**
- **8.2 Adaptive Sensing and its Policies**
 - **8.2.1 Hierarchical Sensing Techniques**
 - **8.2.2 Adaptive Sampling**
- **8.3 Adaptation at the Energy Harvesting Level**
 - **8.3.1 The Incremental Conductance Approach**
 - **8.3.2 The Perturb and Observe Approach**
- **8.4 Intelligent Algorithms for Clock Synchronization**
 - **8.4.1 Clock Synchronization: The Framework**
 - **8.4.2 Statistic Methods for Clock Synchronization**
 - **8.4.3 Adaptive Methods for Clock Synchronization**
 - **8.4.4 Predictive Methods for Clock Synchronization**
- **8.5 Localization and Tracking**
 - **8.5.1 RSS-Based Localization**
 - **8.5.2 Time-of-Arrival Based Localization**
 - **8.5.3 Angle-of-Arrival Based Localization**
 - **8.5.4 Frequency-of-Arrival Based Method**
- **8.6 Adaptation at the Application Code Level**
 - **8.6.1 Remote Parametric-Code Reprogrammability**
 - **8.6.2 Remote Code Reprogrammability**
 - **8.6.3 Decision Support System**
 - **8.6.4 Online Hardware Reprogrammability**
 - **8.6.5 An Application: The Rialba Monitoring System**

9 Learning in Nonstationary and Evolving Environments

- **9.1 Passive and Active Learning**
 - **9.1.1 Passive Learning**
 - **9.1.2 Active Learning**
- **9.2 Change Point Methods**
 - **9.2.1 Change Points**
 - **9.2.2 Set Dissimilarity**
 - **9.2.3 The Change Point Formulation**
 - **9.2.4 Test Statistics Used in CPMs**
 - **9.2.5 Extensions Over the Basic Scheme**
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Change Detection Tests</td>
<td>227</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The CUSUM CDT Family</td>
<td>227</td>
</tr>
<tr>
<td>9.3.2</td>
<td>The Intersection of Confidence Intervals CDT Family</td>
<td>231</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Amygdala—VM-PFC: The H-CDT</td>
<td>238</td>
</tr>
<tr>
<td>9.4</td>
<td>The Just-in-Time Learning Framework</td>
<td>239</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Observation Model</td>
<td>240</td>
</tr>
<tr>
<td>9.4.2</td>
<td>The JIT Classifier</td>
<td>241</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Gradual Concept Drift</td>
<td>245</td>
</tr>
<tr>
<td>9.4.4</td>
<td>JIT for Gradual Concept Drift</td>
<td>246</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Amygdala—VM-PFC—LPAC-ACC: The JIT Approach</td>
<td>247</td>
</tr>
<tr>
<td>10</td>
<td>Fault Diagnosis Systems</td>
<td>249</td>
</tr>
<tr>
<td>10.1</td>
<td>Model-Based Fault Detection and Isolation</td>
<td>252</td>
</tr>
<tr>
<td>10.2</td>
<td>Model-Free Fault Detection and Isolation</td>
<td>253</td>
</tr>
<tr>
<td>10.2.1</td>
<td>FDS: The Sensor Level Case</td>
<td>255</td>
</tr>
<tr>
<td>10.2.2</td>
<td>FDS: Changes in a Sensor–Sensor Relationship</td>
<td>260</td>
</tr>
<tr>
<td>10.2.3</td>
<td>FDS: The Multi Sensors Case</td>
<td>265</td>
</tr>
<tr>
<td>10.3</td>
<td>Amygdala and VM-PFC: FDS at the Multi Sensor Level</td>
<td>270</td>
</tr>
</tbody>
</table>

References | 271 |

Index | 281 |
Intelligence for Embedded Systems
A Methodological Approach
Alippi, C.
2014, XIX, 283 p. 81 illus., 73 illus. in color., Hardcover
ISBN: 978-3-319-05277-9