Contents

1 Quantum-Mechanical Fundamentals of Lasers 1
 1.1 Einstein Relations and Planck’s Law 1
 1.2 Transition Probabilities and Matrix Elements 5
 1.2.1 Dipole Radiation and Spontaneous Emission 5
 1.2.2 Stimulated Emission and Absorption 6
 1.3 Mode Structure of Space and the Origin of Spontaneous Emission 9
 1.3.1 Mode Density of the Vacuum and Optical Media 9
 1.3.2 Vacuum Fluctuations and Spontaneous Emission 11
 1.4 Cross Sections and Broadening of Spectral Lines 14
 1.4.1 Cross Sections of Absorption and Emission 14
 1.4.2 Natural Line Width and Broadening of Spectral Lines 18
References .. 21

2 The Laser Principle .. 23
 2.1 Population Inversion and Feedback 23
 2.1.1 The Two-Level System 24
 2.1.2 Three- and Four-Level Systems 24
 2.1.3 The Feedback Condition 33
 2.2 Spectroscopic Laser Rate Equations 35
 2.2.1 Population and Stationary Operation 35
 2.2.2 Relaxation Oscillations 41
 2.3 Potential Model of the Laser 44
References .. 47

3 Optical Resonators .. 49
 3.1 Linear and Ring Resonators and Their Stability Criteria 49
 3.1.1 Basics of Matrix Optics 49
 3.1.2 Stable and Unstable Linear Resonators 50
 3.1.3 Stable and Unstable Ring Resonators 54
 3.2 Mode Structure and Intensity Distribution 55
 3.2.1 The Fundamental Mode: The Gaussian Beam 56
Contents

3.2.2 Higher-Order Transverse Modes and Beam Quality 61
3.2.3 Longitudinal Modes and Hole-Burning Effects 69
3.3 Line Width of the Laser Emission .. 72
References ... 74

4 Generation of Short and Ultra-Short Pulses 75

4.1 Basics of Q-Switching ... 75
4.1.1 Active Q-Switching ... 75
4.1.2 Experimental Realization .. 81
4.1.3 Passive Q-Switching ... 86
4.1.4 Scaling Laws of Repetitive Q-Switching 89
4.2 Basics of Mode Locking and Ultra-Short Pulses 92
4.2.1 Active Mode Locking ... 94
4.2.2 Passive Mode Locking ... 96
4.2.3 Pulse Compression of Ultra-Short Pulses 98
References ... 103

5 Laser Examples and Their Applications .. 105

5.1 Gas Lasers: The Helium-Neon-Laser .. 105
5.2 Solid-State Lasers .. 108
5.2.1 The Nd$^{3+}$-Laser ... 109
5.2.2 The Tm$^{3+}$-Laser ... 121
5.2.3 The Ti$^{3+}$:Al$_2$O$_3$ Laser ... 130
5.3 Special Realisations of Lasers .. 135
5.3.1 Thermal Lensing and Thermal Stress 136
5.3.2 The Fiber Laser ... 140
5.3.3 The Thin-Disk Laser .. 158
References ... 165

Index .. 167
Laser Physics
From Principles to Practical Work in the Lab
Eichhorn, M.
2014, VIII, 171 p. 130 illus., Hardcover
ISBN: 978-3-319-05127-7