Contents

1 Holographic Liquid Crystals for Nanophotonics 1
 Timothy D. Wilkinson, Haider Butt and Yunuen Montelongo
 1.1 Introduction .. 2
 1.2 Computer Generated Holography 3
 1.2.1 Diffraction Through an Aperture 3
 1.2.2 Calculating Computer Generated Holograms 8
 1.3 Carbon Nanotubes ... 11
 1.4 The Optics of Nematic Liquid Crystals 12
 1.5 Carbon Nanotube Plasmonic Devices 14
 1.6 Quasi Crystalline Diffraction from Nanotube Arrays 17
 1.7 CNT Based CGH Holograms 21
 1.8 Nanophotonic Antennas 25
 1.9 Conclusions and Discussion 32
 References .. 33

2 Directing 3D Topological Defects in Smectic Liquid Crystals
 and Their Applications as an Emerging Class of Building Blocks
 .. 35
 Apiradee Honglawan and Shu Yang
 2.1 Introduction .. 35
 2.2 Engineering Focal Conic Domain Structure
 Through Confinement .. 39
 2.2.1 Confinement: Chemically Patterned Surfaces 40
 2.2.2 Confinement: Topographical Surfaces 42
 2.2.3 3D Confinement of Focal Conic Domains 43
 2.2.4 Generation of Focal Conic Domains
 with Non-zero Eccentricity in Thin Films 50
 2.3 Applications of Focal Conic Domain Arrays 55
 2.4 Conclusions and Perspective 61
 2.4.1 Complex Templates 64
 2.4.2 Directed Assemblies from Other LC Phases 64
 2.4.3 Templating Nanomaterials and Other Applications
 of SmA LCs ... 64
 References .. 65
3 Liquid Crystalline 1D and 2D Carbon Materials 69
Hari Krishna Bisoyi, Sandeep Kumar and Quan Li
3.1 Introduction 69
3.2 Carbon Nanotube Based LCs 71
 3.2.1 Acid Functionalized CNTs 73
 3.2.2 Protonated CNTs 74
 3.2.3 Biopolymer Functionalized CNTs 74
 3.2.4 Polymer Functionalized CNTs 77
 3.2.5 Other Methods of Fabricating Liquid Crystalline Phase of CNTs 79
3.3 Graphene Based LCs 81
 3.3.1 Protonated Graphenes 83
 3.3.2 Graphene Oxide Based LCs 83
 3.3.3 Reduced Graphene Oxide Based LCs 89
 3.3.4 Thermotropic LCs of Synthetic Nanographenes 91
3.4 Conclusions and Outlook 91
References 93

4 Liquid Crystal-Gold Nanoparticle Hybrid Materials 101
Chenming Xue and Quan Li
4.1 Introduction 101
4.2 Fundamentals of LCs and GNPs 103
4.3 LC/GNP Hybrid Materials 106
 4.3.1 Overview 106
 4.3.2 Rod-Like Mesogen Coated GNPs 108
 4.3.3 Bent-Core Mesogen Coated GNPs 113
 4.3.4 Mesogenic Dendron Coated GNPs 113
 4.3.5 Disc-Like Mesogen Coated Gold Nanoparticles 116
 4.3.6 Hybrid Gold Nanorods 118
4.4 Applications 123
4.5 Conclusions 126
References 128

5 Photoresponsive Chiral Liquid Crystal Materials: From 1D Helical Superstructures to 3D Periodic Cubic Lattices and Beyond 135
Yannian Li and Quan Li
5.1 Introduction 136
5.2 Chiral Liquid Crystals 136
 5.2.1 Chiral Nematic Phase 137
 5.2.2 Chiral Smectic C Phase 138
 5.2.3 Blue Phase 140
5.3 Photoresponsive Chiral LCs 140
6 Glassy Liquid Crystals as Self-Organized Films for Robust Optoelectronic Devices
H.-M. Philp Chen, Jane J. Ou and Shaw H. Chen

6.1 Concept and Relevance of Glassy Liquid Crystals
6.2 Prior Empirical Approaches to GLCs
6.3 Modular Approaches to GLCs
6.4 Optical Properties of Cholesteric LC Films
6.5 Synthesis of Core-Pendant Cholesteric GLCs
6.5.1 Statistical Synthesis
6.5.2 Deterministic Synthesis
6.6 Hairy Rods for Preparation of Conjugated GLC Films
6.7 Optoelectronic Devices Utilizing GLCs
6.7.1 Circular Polarizers, Optical Notch Filters and Reflectors
6.7.2 Modulating Circular Polarization and Reflective Coloration
6.7.3 Circularly Polarized Fluorescence
6.7.4 Photoswitchable Nematic GLC Film
6.7.5 Photoswitchable Cholesteric GLC Film
6.7.6 Linearly Polarized Fluorescent Organic Light-Emitting Diodes
6.7.7 Linearly Polarized Phosphorescent Organic Light-Emitting Diodes
6.7.8 Circularly Polarized Fluorescent Organic Light-Emitting Diodes
6.7.9 Cholesteric GLC Film as Robust Solid-State Laser
6.7.10 Spatially Resolved Lasing from a Cholesteric GLC Film
6.8 Solvent-Vapor Annealing of Conjugated Oligomers
6.9 Conclusions
References
7 Directing Self-Organized Columnar Nanostructures
of Discotic Liquid Crystals for Device Applications 209
Hari Krishna Bisoyi and Quan Li
7.1 Introduction .. 209
7.2 Homeotropic Columnar Orientation 213
 7.2.1 Thermal Alignment Method 214
 7.2.2 Chemical Structure Modification 218
 7.2.3 Surface Modification of Substrates 221
 7.2.4 Electric Field .. 223
 7.2.5 Infrared Irradiation 224
 7.2.6 Other Methods .. 226
7.3 Homogeneous (Planar) Columnar Orientation 228
 7.3.1 Mechanical Shearing 228
 7.3.2 Magnetic Field ... 230
 7.3.3 Polytetrafluoroethylene Alignment Layer 232
 7.3.4 Langmuir-Blodgett Technique 233
 7.3.5 Zone Casting .. 237
 7.3.6 Zone Melting .. 238
 7.3.7 Other Methods .. 239
7.4 Alignment of DLCs in Micro- and Nanopores
and Channels ... 241
7.5 Conclusions and Outlook 245
References ... 246

8 Discotic Liquid Crystalline Blends for Nano-Structure
Formation Toward Bulk Heterojunction Active Layer
in Organic Photovoltaics ... 257
Yo Shimizu
8.1 Introduction .. 257
8.2 Miscibility and Phase Separation in Liquid Crystals 260
8.3 Liquid Crystalline Blends Toward Semiconductors 263
8.4 Liquid Crystalline Blends in Organic Photovoltaics 268
8.5 Summary .. 275
References ... 276

9 Ion-Based Liquid Crystals: From Well-Defined
Self-Organized Nanostructures to Applications 281
Hiromitsu Maeda
9.1 Introduction .. 281
9.2 Solid-State Ion-Based Assembled Structures 283
9.3 Thermotropic Ion-Based Crystals Based on Planar
Receptor–Anion Complexes and Appropriate Cations 285
10 Nanotechnology and Nanomaterials in Photodeformable Liquid Crystalline Polymers

Li Yu, Haifeng Yu and Quan Li

10.1 Introduction ... 301
10.2 Mechanism of Photoinduced Deformation in LCPs 302
10.3 Application of Nanotechnology and Nanomaterials in Photo-Driven Actuators of LCPs 303
10.3.1 Template for Alignment of Mesogens 304
10.3.2 Nanomaterials for Wavelength Regulation 307
10.4 Soft Actuators Based on Nanomaterials Functionalized LCPs 310
10.4.1 Optically Controlled Switching 311
10.4.2 IR-Triggered Artificial Arm 312
10.4.3 Inchworm Walker Devices 313
10.5 Conclusions and Outlook .. 314
References .. 315

11 Self-Assembled Liquid Crystalline Conjugated Polymers: Synthesis, Development, and Their Advanced Electro-Optical Properties

Benedict A. San Jose and Kazuo Akagi

11.1 Introduction .. 319
11.2 Hierarchical Self-assembly of Liquid Crystalline Conjugated Polymers .. 321
11.2.1 Whisker Morphology Consisting of Hierarchically Self-assembled Polymer Helices 322
11.2.2 Macroscopic Alignment of the Self-assembled Polymer Helix by a Magnetic Field 324
11.3 Helical π-Stacked Self-assemblies of Liquid Crystalline Conjugated Polymers Showing Circularly Polarized Luminescence with High Dissymmetry Factors 329
11.3.1 Lyotropic Di-substituted Polyacetylenes that Exhibit High Dissymmetry Factors in Circularly Polarized Luminescence Through the Chiral Nematic Liquid Crystal Phase ... 330
11.3.2 Helically π-Stacked Thiophene-based Copolymers that Exhibit RGB and White Circularly Polarized Luminescence ... 334
11.4 Dynamic Switching Functionalities of Liquid Crystalline Conjugated Polymers .. 338
11.4.1 Ferroelectric Liquid Crystalline Poly(meta-phenylene) .. 339
11.4.2 Dynamic Switching of Linearly and Circularly Polarized Luminescence of Liquid Crystalline Photoresponsive Conjugated Polymers ... 343
11.5 Summary ... 349
References ... 350

12 Solubilization and Delivery of Drugs from GMO-Based Lyotropic Liquid Crystals .. 355
Nissim Garti, Dima Libster and Abraham Aserin
12.1 Characterization and Structural Considerations 356
12.1.1 Introduction .. 356
12.1.2 The Amphiphiles ... 357
12.1.3 Cubic Phases .. 358
12.1.4 The Reverse Hexagonal Mesophase 359
12.1.5 The Lamellar Mesophase 360
12.1.6 Phase Behavior .. 361
12.1.7 HII Mesophase Composed of GMO/Triglyceride/Water as Drug Delivery Systems 363
12.1.8 Molecular Interactions of LLCs with Proteins and Nucleotides .. 367
12.1.9 Solubilization and Delivery of Biomacromolecules .. 371
12.2 LLC as Drug Delivery Vehicles 375
12.2.1 Monoolein and Phytantriol: Main Building Blocks of Lipids Mesophases 378
12.2.2 Hexagonal and Cubic Mesophases and Their Dispersions as Carriers of Hydrophilic Drugs Cubosomes, Hexosomes and Micellosomes 378
12.2.3 Oral Administration Using LLC 379
12.2.4 Transdermal Delivery from LLC 381
12.2.5 Delivery of Lipophilic Drugs from LLC Systems ... 383
12.2.6 Administration of an Amphiphilic Drug 392
12.2.7 Release of Proteins as Drugs 393
12.2.8 Specific Utilization of Penetration Enhancers for Delivery of Hydrophilic Drugs from LLC 399
12.2.9 Probable Mechanisms of Delivery 407
12.3 Conclusions ... 408
References ... 409
Index ... 415
Nanoscience with Liquid Crystals
From Self-Organized Nanostructures to Applications
Li, Q. (Ed.)
2014, XVI, 420 p. 263 illus., 36 illus. in color., Hardcover
ISBN: 978-3-319-04866-6