Contents

Part I Design of Digital Circuits and Systems on the Basis of FPGA

1 FPGA Architectures, Reconfigurable Fabric, Embedded Blocks and Design Tools ... 3
 1.1 Introduction to FPGA 3
 1.2 The Basis of FPGA Devices 8
 1.2.1 Configurable Logic Blocks of Xilinx FPGAs 8
 1.2.2 Logic Elements of Altera FPGAs 12
 1.3 Embedded Blocks 13
 1.3.1 Embedded Memories 13
 1.3.2 Embedded DSP Slices 17
 1.4 Clock Distributions and Resets 20
 1.5 Design Tools .. 21
 1.6 Implementation and Prototyping 27
 1.7 Interaction with FPGA-Based Circuits and Systems 34
 References .. 40

2 Synthesizable VHDL for FPGA-Based Devices 43
 2.1 Introduction to VHDL 43
 2.2 Data Types, Objects and Operators 50
 2.3 Combinational and Sequential Processes 55
 2.3.1 Combinational Processes 56
 2.3.2 Sequential Processes 59
 2.4 Functions, Procedures, and Blocks. 63
 2.5 Generics and Generates 70
 2.6 Libraries, Packages, and Files 76
 2.7 Behavioral Simulation 81
 2.8 Prototyping ... 85
 References .. 88
3 Design Techniques 89
 3.1 Combinational Circuits 89
 3.1.1 Encoders 92
 3.1.2 Decoders 93
 3.1.3 Multiplexers 94
 3.1.4 Comparators 95
 3.1.5 Arithmetical Circuits 95
 3.1.6 Barrel Shifters 96
 3.2 Sequential Circuits 97
 3.2.1 Registers 97
 3.2.2 Shift Registers 98
 3.2.3 Counters 98
 3.2.4 Arithmetical Circuits with Accumulators 99
 3.3 Finite State Machines 100
 3.4 Optimization of FPGA-Based Circuits and Systems 104
 3.4.1 Highly Parallel Network-Based Solutions 105
 3.4.2 Hardware Accelerators 110
 3.4.3 Parallel Modular Algorithms Running
 in Hierarchical FSMs 111
 3.5 Design Examples for Parallel Sort 112
 3.6 Design Examples for Parallel Search 118
 3.7 Design Examples for Parallel Counters 123
 3.8 Design Examples for Counting Networks 127
 3.9 Design Examples for LUT-Based Hamming Weight
 Counters/Comparators 130
 3.10 Design Examples for Operations Over Vectors 137
References .. 141

4 Embedded Blocks and System-Level Design 143
 4.1 Using IP Cores 143
 4.2 Design with Embedded DSP Slices 153
 4.3 Interaction with FPGA 158
 4.3.1 Digilent Parallel Port Interface 159
 4.3.2 UART Interface 167
 4.4 Software/Hardware Co-design and Co-simulation 179
 4.4.1 Software-Hardware Co-design with Digilent
 Parallel Port Interface 181
 4.4.2 Software-Hardware Co-design with UART Interface 188
 4.5 Programmable Systems-on-Chip 197
References .. 202

5 Design Technique Based on Hierarchical and Parallel Specifications ... 205
 5.1 Modular Hierarchical Specifications 205
 5.2 Hierarchical Finite State Machines 210
 5.2.1 HDL Template for HFSM with Explicit Modules 211
5.2.2 HDL Template for HFSM with Implicit Modules 220
5.3 Synthesis of HFSMs .. 221
 5.3.1 Synthesis of HFSMs with Explicit Modules 222
 5.3.2 Synthesis of HFSMs with Implicit Modules 229
5.4 Parallel Specifications and Parallel HFSMs 230
5.5 Hardware Implementations of Software Programs
 Based on HFSM Models .. 239
5.6 Using Stacks Based on Embedded or Distributed Memories 242
5.7 Optimization Techniques 245
 5.7.1 Execution of Hierarchical Returns 245
 5.7.2 Providing Multiple Entry Points to HGSs 246
 5.7.3 Fast Stack Unwinding 247
5.8 Practical Applications 247
References .. 254

Part II Methods for Optimization of Finite State Machines
for FPGA-Based Circuits and Systems

6 Hardware Reduction in Logic Circuits of Moore FSM 259
 6.1 General Characteristic of Existing Methods 259
 6.2 Object Transformation in Moore FSM 266
 6.3 Expansion of State Codes for Moore FSM 271
 6.4 Synthesis of Moore FSM with Replacement of Logical Conditions .. 279
References .. 283

7 Design of FSMs with Embedded Memory Blocks 285
 7.1 Trivial Implementation of Mealy and Moore FSMs 285
 7.2 Structural Decomposition of FSMs 291
 7.3 Design of Mealy FSM with Encoding of the Collections of Microoperations 295
 7.4 Design of Mealy FSM with Encoding of the Fields of Compatible Microoperations 298
 7.5 Design of Mealy FSM with Encoding of the Rows of Structure Table .. 300
 7.6 Optimization of BIMF Based on Pseudoequivalent States of Moore FSM 305
References .. 310

8 Optimization of FSMs with Embedded Memory Blocks 313
 8.1 Trivial Implementation of MP Mealy FSMs 313
 8.2 Optimization of LUTer 321
 8.3 Optimization of LUTer Based on Pseudoequivalent States ... 325
 8.4 Optimization of LUTer Based on Encoding of Collections of Microoperations 334
References .. 341
9 Finite State Machines with Operational Implementation of Transitions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Conception of Operational Implementation of Transitions</td>
<td>343</td>
</tr>
<tr>
<td>9.2 Organisation of FSM with Operational Generation of Transitions</td>
<td>346</td>
</tr>
<tr>
<td>9.3 Example of FSM Design</td>
<td>349</td>
</tr>
<tr>
<td>9.4 Structural Representation of Synthesis Process for FSM with OAT</td>
<td>353</td>
</tr>
<tr>
<td>9.4.1 Base Structure of Synthesis Process for FSM with OAT</td>
<td>354</td>
</tr>
<tr>
<td>9.4.2 Refinement of Basic Structure of Synthesis Process</td>
<td>355</td>
</tr>
<tr>
<td>9.5 Organization of Operational Automaton of Transitions</td>
<td>359</td>
</tr>
<tr>
<td>9.5.1 Typical Structure Models of Operational Automata</td>
<td>359</td>
</tr>
<tr>
<td>9.5.2 Organizational Specifics of OAT</td>
<td>360</td>
</tr>
<tr>
<td>9.5.3 Organization of Combinational Part of OAT</td>
<td>360</td>
</tr>
<tr>
<td>9.6 Synthesis Method for FSM with Supplemented Set of Operations of Transitions</td>
<td>363</td>
</tr>
<tr>
<td>9.7 Investigation of Efficiency of FSM with OAT</td>
<td>367</td>
</tr>
</tbody>
</table>

References: 373

Appendix A: VHDL Constructions Used in the Book and Additional Support Materials

Appendix A: VHDL Constructions Used in the Book and Additional Support Materials 375

Appendix B: Coding Examples

Appendix B: Coding Examples 403

Index

Index 429
Synthesis and Optimization of FPGA-Based Systems
Sklyarov, V.; Skliarova, I.; Barkalov, A.; Titarenko, L.
2014, XIX, 432 p. 235 illus., Hardcover
ISBN: 978-3-319-04707-2