Contents

1 **Introduction** .. 1
 1.1 Background .. 1
 1.2 Human Reliability, Error, and Human Factors in Power Generation-Related Facts, Figures, and Examples. 1
 1.3 Terms and Definitions. 3
 1.4 Useful Information on Human Reliability, Error, and Human Factors in Power Generation 4
 1.4.1 Books ... 4
 1.4.2 Journals 5
 1.4.3 Technical Reports 6
 1.4.4 Conference Proceedings 6
 1.4.5 Data Sources 7
 1.4.6 Organizations 8
 1.5 Scope of the Book 9
 1.6 Problems .. 9

References .. 10

2 **Basic Mathematical Concepts** 13
 2.1 Introduction 13
 2.2 Sets and Boolean Algebra Laws 13
 2.3 Probability Definition and Properties 15
 2.4 Useful Mathematical Definitions 16
 2.4.1 Definition I: Probability Density Function 16
 2.4.2 Definition II: Cumulative Distribution Function . 17
 2.4.3 Definition III: Expected Value 18
 2.4.4 Definition IV: Laplace Transform 19
 2.4.5 Definition V: Laplace Transform: Final-Value Theorem 19
 2.5 Probability Distributions 20
 2.5.1 Exponential Distribution 20
 2.5.2 Rayleigh Distribution 21
 2.5.3 Weibull Distribution 22
 2.5.4 Bathtub Hazard Rate Curve Distribution 23
4.7 Fault Tree Analysis. .. 57
 4.7.1 Fault Tree Probability Evaluation 59
 4.7.2 Fault Tree Analysis Advantages and Disadvantages 62
4.8 Problems .. 63
References ... 63

5 Specific Human Reliability Analysis Methods for Nuclear Power Plants ... 65
 5.1 Introduction ... 65
 5.2 Incorporation of the Human Reliability Analysis Integrally into a Probabilistic Risk Assessment and Requirements for Human Reliability Analysis Method 65
 5.3 Human Reliability Analysis Process Steps and Their End Products ... 67
 5.4 Human Reliability Analysis Methods 68
 5.4.1 A Technique for Human Event Analysis 69
 5.4.2 Cognitive Reliability and Error Analysis Method 70
 5.4.3 Technique for Human Error Rate Prediction 72
 5.4.4 Success Likelihood Index Method–Multi-Attribute Utility Decomposition ... 73
 5.4.5 Accident Sequence Evaluation Program 74
 5.4.6 Human Cognitive Reliability Model 74
 5.4.7 Standardized Plant Analysis Risk–Human Reliability Analysis ... 75
 5.4.8 Human Error Assessment and Reduction Technique 77
 5.5 Problems .. 78
References ... 78

6 Human Factors in Power Generation 81
 6.1 Introduction ... 81
 6.2 Human Factors Engineering Design Goals and Responsibilities .. 81
 6.3 Human Factors Issues in Ageing Power Plants 82
 6.4 Human Factors Issues that Can have Positive Impact on Nuclear Power Plant Decommissioning 83
 6.5 Human Factors Review Guide for Next-Generation Reactors and Guidance Documents for Human Factors ... 86
 6.5.1 Guidance Documents for Human Factors. 88
 6.6 Potential Human Factors Engineering Application Areas and Expected Problems ... 89
 6.7 Problems .. 91
References ... 91
7 Human Error in Power Generation

7.1 Introduction ... 93
7.2 Facts, Figures, and Examples ... 93
7.3 Major Factors for Human Errors and Their Occurrence Preventions ... 94
7.4 Occurrences Caused by Operator Errors During Operation and Operator Error Causes ... 95
7.5 Questions to Measure Up Electrical Power System Operating Practices to Reduce Human Errors ... 95
7.6 Performance Shaping Factors ... 97
7.7 Methods for Analyzing Human Errors in Power Generation 98
 7.7.1 Pontecorvo Method ... 98
 7.7.2 Probability Tree Method ... 100
 7.7.3 Pareto Analysis .. 103
7.8 Problems .. 104
References ... 104

8 Human Factors in Control Systems

8.1 Introduction .. 107
8.2 Control Room Design Deficiencies that can Lead to Human Error .. 107
8.3 Advantages of Considering Human Factors in Digital Control Room Upgrades, an Approach to Incorporate Human Factors Considerations in Digital Control Room Upgrades, and Recommendations to Overcome Problems When Digital Control Room Upgrades are Undertaken Without Considering Human Factors into Design .. 108
8.4 Common Problems Associated with Controls and Displays and Their Corrective Measures ... 110
8.5 Human Engineering Discrepancies in Control Room Visual Displays .. 111
8.6 Human Factors Guidelines for Digital Control System Displays .. 112
 8.6.1 Windows ... 113
 8.6.2 Alarms .. 114
 8.6.3 Manual/Auto Stations, Controls on Mimics, and Permissive and Tag Outs ... 115
 8.6.4 Inter-Frame Navigation .. 115
 8.6.5 Colour Usage ... 116
8.7 Human Performance-Related Advanced Control Room Technology Issues .. 116
8.8 Control Room Annunciator’s Human Factors-Related Evaluation 117
8.9 Problems .. 119
References .. 120

9 Human Factors in Power Plant Maintenance .. 123
9.1 Introduction ... 123
9.2 Power Plant Systems’ Human Factors Engineering Maintenance-Related
 Shortcomings ... 123
9.3 Desirable Human Factors Engineering Maintenance-Related
 Attributes of a Power Plant’s Well-Designed Systems and Elements Relating to
 Human Performance that Can Contribute to a Successful Maintenance Programme 124
9.4 Performance Goals of a Power Plant that Drive Decisions About Human Factors and a Study of Human Factors in Power Plants .. 125
9.5 Advantages of Human Factors Engineering Applications in Power Plants 128
9.6 Human Factors’ Methods to Assess and Improve Power Plant Maintainability 129
 9.6.1 Critical Incident Method ... 129
 9.6.2 Task Analysis .. 130
 9.6.3 Structured Interviews ... 130
 9.6.4 Maintainability Checklist ... 131
 9.6.5 Potential Accident/Damage Analyses .. 132
9.7 Problems .. 132
References .. 132

10 Human Error in Power Plant Maintenance .. 135
10.1 Introduction ... 135
10.2 Facts, Figures, and Examples ... 135
10.3 Maintenance Tasks Most Susceptible to Human Error in Power Generation and Types of Human Errors in Digital Plant Protection Systems Maintenance Tasks 136
10.4 Causal Factors for Critical Incidents and Reported Events Related to Maintenance Error in Power Plants and Classifications of Causes of Human Error in Power Plant Maintenance ... 137
10.5 Steps for Improving Maintenance-Related Procedures in Power Plants 140
10.6 Useful Guidelines to Reduce and Prevent Human Errors in Power Plant Maintenance ... 140
10.7 Methods for Performing Human Error Analysis
in Power Plant Maintenance

10.7.1 Maintenance Personnel Performance Simulation
(MAPPS) Model

10.7.2 Markov Method

10.7.3 Fault Tree Analysis

10.8 Problems

References

11 Mathematical Models for Performing Human Reliability
and Error Analysis in Power Plants

11.1 Introduction

11.2 Model I: Human Correctability Probability Function

11.3 Model II: Critical and Non-Critical Human Errors
Probability Prediction

11.4 Model III: Human Performance Reliability
in Fluctuating Environment

11.5 Model IV: Human Performance Reliability Prediction
with Critical and Non-Critical Self-Generated
Errors and Corrective Action

11.6 Model V: Availability Analysis of a Power Plant
System with Human Error

11.7 Model VI: Reliability Analysis of a Power Plant Redundant
System with Human Errors

11.8 Problems

References

Author Biography

Appendix Bibliography: Literature on Human Reliability, Error,
and Human Factors in Power Generation
Human Reliability, Error, and Human Factors in Power Generation
Dhillon, B.S.
2014, XIV, 188 p. 42 illus., Hardcover
ISBN: 978-3-319-04018-9