Contents

1 Introduction .. 1
 1.1 The Semantic Web 1
 1.1.1 Ontology Languages Layer 3
 1.1.2 The Logic Layer 6
 1.2 Challenges in Semantic Web Applications for Business Intelligence in an Enterprise 14
 1.3 Defeasible Reasoning 17
 1.4 Argumentation 19
 1.5 Argumentation Support in Semantic Web Applications: Research Gaps 22
 1.6 Research Objectives of the Thesis 23
 1.7 Scope of the Thesis 24
 1.8 Significance of the Thesis 24
 1.8.1 Scientific Significance 24
 1.8.2 Social Significance 25
 1.9 Thesis Plan .. 26
 1.10 Conclusion ... 27
 References ... 27

2 Literature Review 31
 2.1 Introduction .. 31
 2.2 Basic Definitions 31
 2.2.1 Argumentation 31
 2.2.2 Argumentation Systems 32
 2.2.3 Argument, Rebuttal, Undercut and Acceptable Arguments .. 32
 2.2.4 Argumentation Scheme 32
 2.2.5 Argumentation Life Cycle 33
 2.2.6 Types of Arguments 33
 2.2.7 Patterns of Arguments 34
 2.2.8 Monological and Dialogical Argumentation 34
 2.2.9 Static and Dynamic Argumentation Framework 34
 2.3 Argumentation-Based Models, Frameworks and Applications .. 35
To Propose a Methodology for Information and Knowledge Integration 93
To Exploit the Power of a Generic Framework in Different Semantic Web Applications as Follows ... 94
To Validate and Evaluate the Proposed Framework 95
Research Approach to Problem Solving 95
Research Methods ... 95
Choice of Science and Engineering-Based Research Method .. 96
Validation and Evaluation of the Proposed Framework ... 97
References .. 98

Solution Overview .. 99
Introduction ... 99
Solution Overview for Logic-Based Framework that Supports Argumentation in Semantic Web Applications (GF@SWA) 100
Information Layer ... 102
Argumentation-Driven Information Representation, Reasoning and Integration Layer (@IRRI) 103
Solution for Incomplete and/or Contradictory Information Representation 103
Solution for Monological Argumentation-Driven Reasoning Engine to Reason over Incomplete and/or Contradictory Information .. 105
Solution for Information and Knowledge Integration ... 109
Applications Layer ... 110
Realization of Semantic Web Applications Using GF@SWA for Business Intelligence 111
Web@IDSS .. 111
Web@KIDSS .. 112
KR@PMD .. 112
Conclusion .. 113
References .. 113

Argumentation-Enabled Web-Based Intelligent Decision Support System (Web@IDSS) 115
Introduction .. 115
Case Study for Problem Definition 117
Proposed Framework for Argumentation-Enabled Web-Based IDSS (Web@IDSS) 119
Important Definitions 121
Working of the Proposed Framework for Web@IDSS ... 130
5.4 Information Representation in DeLP Format	133
5.4.1 Information Pre-processing	134
5.4.2 Web-Based Form to Specify DeLP Rules and Facts	138
5.5 Argumentative Production System to Perform Hybrid Reasoning	139
5.5.1 Arguments Construction Using Data-Driven Reasoning	141
5.5.2 Conflicts Identification and Their Resolution Using Goal-Driven Reasoning	149
5.6 Information Integration	153
5.6.1 Construction of Reasoning Chains	155
5.6.2 Categorization of Reasoning Chains	157
5.6.3 Graphical Representation of a Reasoning Chain	158
5.7 Conclusion	159
References	160

6 Enterprise Knowledge Integration Through Argumentation-Enabled Intelligent Decision Support Systems (Web@KIDSS) | 163 |
6.1 Introduction	163
6.2 Case Study for Problem Definition	164
6.3 Proposed Framework for Argumentation-Enabled Web-Based IDSS for Enterprise Knowledge Integration (Web@KIDSS)	167
6.3.1 Important Definitions	169
6.3.2 Working of the Proposed Framework for Web@KIDSS	174
6.4 Publication of Enterprise Integrated Information (EII) in a Standard Format	177
6.4.1 Modeling of a Reasoning Chain as an AIF Argument Network	178
6.4.2 Semantic Annotation and Serialization of a Reasoning Chain	182
6.5 Enterprise Knowledge Integration (EKI)	182
6.5.1 Import and Transform the Published Reasoning Chains	185
6.5.2 Valuation of the Reasoning Chains	188
6.5.3 Generation of Integrated Recommendations Space	192
6.6 Graphical Representation of Results to Support Intelligent Decision Making	196
6.7 Conclusion	199
References	200
7 Process Map Discovery from Business Policies: A Knowledge Representation Approach with Argumentative Reasoning (KR@PMD) 201
7.1 Introduction ... 201
7.2 Unstructured Business Policies and Challenges for the Enterprises 202
7.3 Case Study for Problem Definition 204
7.4 Proposed Framework for KR@PMD 207
 7.4.1 Process Ontology .. 209
 7.4.2 Working of the Proposed Framework for KR@PMD .. 211
 7.5.1 Semantic Annotation of Business Policies 215
 7.5.2 Specification of Business Rules and Facts 217
7.6 Argumentative Production System Performing Hybrid Reasoning .. 219
 7.6.1 Process Activation Using Data-Driven Reasoning 220
 7.6.2 Argumentation-Driven Conflict Resolution Strategies 223
 7.6.3 Building and Marking of Dialectical Trees 227
7.7 Graphical Representation of Business Process Maps 228
7.8 Conclusion .. 232
References ... 232

8 Validation and Evaluation of GF@SWA 235
8.1 Introduction .. 235
8.2 General Description of the Tools 235
8.3 Objectives for the Development of GF@SWA 236
8.4 Characteristics of the Proposed GF@SWA 237
 8.4.1 Structure Diagrams 237
 8.4.2 Behavior Diagrams 242
8.5 Functionality Validation and Feature Evaluation of GF@SWA .. 249
 8.5.1 Functionality Validation of Web@IDSS 250
 8.5.2 Features Evaluation of Web@IDSS 255
 8.5.3 Functionality Validation of Web@KIDSS 257
 8.5.4 Features Evaluation of Web@KIDSS 262
 8.5.5 Functionality Validation of KR@PMD 263
 8.5.6 Features Evaluation of KR@PMD 270
8.6 Conclusion .. 272
References ... 272
9 Recapitulation and Future Work 275

9.1 Introduction ... 275

9.2 Recapitulation .. 275

9.3 Contributions of the Thesis 277

9.3.1 Contribution 1: Methodology for Incomplete
and/or Contradictory Information Representation 278

9.3.2 Contribution 2: Methodology for Monological
Argumentation Performed by a Hybrid Reasoning
Engine ... 278

9.3.3 Contribution 3: Methodology for Different
Argumentation-Driven Conflict Resolution Strategies
to Resolve Conflicts Between Arguments
and Their Counter-Arguments .. 279

9.3.4 Contribution 4: Methodology to Integrate the Output
of a Hybrid Reasoning Engine in the Form
of a Reasoning Chain and Generate its Graphical
Representation .. 279

9.3.5 Contribution 5: Methodology for Importing/Exporting
Integrated Information to Different Semantic
Web Applications .. 280

9.3.6 Contribution 6: Methodology for Knowledge
Integration .. 280

9.3.7 Contribution 7: Methodology for the Hybrid Reasoning
Engine to Have a Querying
and Answering Capability 281

9.3.8 Contribution 8: Application of GF@SWA
in Different Semantic Web Applications to Support
Intelligent Decision Making .. 281

9.4 Future Work ... 281

9.4.1 Automated Production Rules Extraction
from Unstructured Information 282

9.4.2 Extension of the Proposed Framework to Work
with Machine Learning Algorithms 282

9.4.3 Extend the Proposed Framework as an
Actual/Generic Argument Model for Practical
Reasoning ... 283

9.4.4 Collaborative Framework for Reasoning
Qualitative Models Extracted from Quantitative
Data to Assist a Group Decision-Making Process 283

9.4.5 Evaluation for Correctness of the Reasoning
Chains Produced by GF@SWA 284

9.5 Conclusion ... 284

References .. 284
A Defeasible Logic Programming-Based Framework to Support Argumentation in Semantic Web Applications
Janjua, N.K.
2014, XVII, 301 p. 110 illus., 4 illus. in color., Hardcover
ISBN: 978-3-319-03948-0