Preface

This SpringerBrief concerns the condition-dependent effects of intraspecific competition on a mammal’s reproductive rate, as well as actions available to an individual (hereafter “type” [genotype and phenotype]) in the face of competition. Group-formation, group-maintenance, and sociality may be favored by selection when genes of social types increase relative to non-social types, beyond some threshold level in a population. When “social” and “sociality” are defined as responses facilitating the reproduction of one or more conspecific, sociality is not a conspicuous feature of Class, Mammalia. Facilitation appears in response to density-dependent conditions characterized by “thermal stress” (stimuli negatively impacting reproductive rate) when niche spaces (“thermal zones”) of (conspecific) types (genotypes and phenotypes: individuals, organisms) overlap relative to variations in resource dispersion (distribution, abundance, and/or quality of food, mates, and/or space). The previous conditions constitute intermediate or high levels of competition for limiting resources, resources influencing the reproductive rates of types. Group-formation and group-maintenance are necessary, but not sufficient, precursors to the evolution of sociality, and recent treatments show that coexistence of different types is best studied using a “trait-based approach”. In theory, a type can be decomposed into a set of expressible traits with varying values dependent upon condition. Social traits expressed by types include “alloparenting”, cooperation, reciprocity, and altruism, unambiguous and measurable features of phenotypes permitting independent quantitative analyses within and between populations and species.

Mammals were preadapted for solitary living during the Triassic when mammal-like reptiles escaped reptilian competitors by adopting nocturnal habits. Consistent with the ancestral patterns of extant mammals and reptiles, the former are, primarily, nocturnal and solitary, the latter, primarily, diurnal. In general, extant adult male mammals are intolerant of other males and of the young, while adult females, unless signaling sexual receptivity, are intolerant of conspecifics other than their offspring and of males. The whole-organism phenotype of one mammal is exposed to abiotic (soil, climate) and biotic (plants, predators) environments that may or may not be correlated across space and time. Ultimately, selection acts on genetically-correlated phenotypic traits and, from a genotype’s perspective, copies of alleles and their associated traits may be carried or expressed throughout a population and, sometimes,
a region (“metapopulation”). For a given genotype, phenotypes will vary spatiotem- 
porally within and between individuals bearing a trait or traits. Mammals found 
in aggregations (temporary assemblages of one or more than one species), or spa-
tiotemporally recurrent groups, may or may not occur in proximity to individuals 
bearing the same genotype because dispersing types may travel near (“viscosity”) 
or far from their natal groups. A type will be designed to do the best it can do to 
maximize its relative fitness (growth rate) in a population, even though niche spaces 
of similar types will overlap, yielding competition for limiting resources (e.g., food, 
mates, space). Thus, interests of types may not coincide, particularly kin whose niche 
spaces are bound to overlap, and responses influencing reproductive rates of similar 
or different types may have beneficial or deleterious effects on per capita rates of 
population growth.

Expanding other treatments, intensities of within- and among-species competition 
in local (“patch”) and regional (population, metapopulation) regimes are expected 
to determine benefits and costs to each mammal’s current and future reproduction 
via condition-dependent interactions between genotype and environment (“reaction 
norms”), including interactions with other members of an aggregation or integrated 
group. Throughout the present review, mammals are assumed to reside in a com-
petitive context, within the individual mammal’s group, between groups, and within 
populations, communities and ecosystems, and interactions between or among con-
specifics may be categorized as facilitation, tolerance, or inhibition. The topic of the 
present synthesis is mammalian social evolution, and, throughout the text, “facilita-
tion” is employed generically to mean facilitation of a type’s relative reproductive 
interests via the facilitation of another type’s reproductive interests, usually another 
group member and often a relative.

Evolutionary transitions to sociality within and between mammalian taxa are 
central to a scientific understanding of sociality as a phenomenon, since the Class 
constitutes the most ecologically dominant terrestrial vertebrate fauna, including 
grades of population structure from “solitary” (“sexually-segregated”) to eusocial 
(overlapping generations, cooperative breeding, reproductive division of labor). Ster-
ile castes have, apparently, not evolved among mammals; thus, in the present brief, 
cooperatively breeding and eusocial molerats are classified as “primitively eusocial”.

In addition, this monograph discusses factors associated with group-formation, 
group-maintenance, group population structure, and, other, events and processes 
(e.g., physiology, behavior). Within- and between-lineages, features of prehistoric 
and extant social mammals, patterns and linkages are discussed as components of 
a possible social “tool-kit”, and “top-down” (predators to nutrients), as well as, 
“bottom-up” (nutrients to predators), effects are assessed. The present synthesis also 
emphasizes outcomes of Hebbian (synaptic) “decisions” on Malthusian parameters 
(growth rates of populations) and their consequences for (shifting) mean fitnesses 
of populations. Ecology and evolution (EcoEvo) are connected via the organism’s 
“norms of reaction” (genotype × environment interactions; life-history tradeoffs of 
reproduction, survival, and growth) exposed to selection, with the success of geno-
types influenced by intensities of selection as well as neutral (e.g., mutation rates) 
and stochastic effects. At every turn, life history trajectories are assumed to arise
from “decisions” made by types responding to competition for limiting resources constrained by Hamilton’s rule (inclusive fitness operations).

This and previous projects would not have been possible without efforts, constructive criticisms, and other inputs from many individuals. I thank Janet Slobodien and her staff for facilitating the current project. My graphics assistants, Monica E. McGarrity, Liz Williams, as well as Charla Schlueer, deserve mention for their technical talents and patience. I am very grateful to Kenneth D. Angielczyk, Lee Drickamer, Ted Fleming, Steven A. Frank, Tarmo Ketola, Phyllis C. Lee, Jesse Marczyk, Daniel J. Mennill, Peter Nonacs, Craig Packer, Michael Platt, Randy Thornhill, Robert L. Trivers, Gene E. Robinson, two anonymous reviewers and, especially, Andrew Bourke, for responding to my questions or commenting on one or more sections of this brief. My children, Dalton Anthony, Julie Karin, and Miguel Luke Jones provided insight, good humor, and support. This brief is dedicated to my teachers, mentors, and colleagues.
The Evolution of Mammalian Sociality in an Ecological Perspective
Jones, C.B.
2014, XI, 112 p. 11 illus., 3 illus. in color., Softcover
ISBN: 978-3-319-03930-5