At no other time are the estimates so important than at the beginning of a project, yet we are so unsure of them. Go/no-go decisions are made, contracts are won and lost, and jobs appear and fade away based on these estimates. As unconfident and uncomfortable as we may be, we must provide these estimates.

—Robert T. Futrell, Donald F. Shafer, Linda Shafer.

One of the essential decisions during estimation is the abstraction level on which we estimate. At one extreme, we may predict effort for a complete project. At the other extreme, we may predict effort for individual work packages or activities. Dissonance between abstraction levels on which we are able to estimate and the level on which we need estimates is a common problem of effort prediction. We may, for example, have past experiences regarding complete projects and thus be able to predict effort for complete projects; yet, in order to plan work activities, we would need effort per project activity. Two basic estimation “strategies” exist for handling this issue: bottom-up and top-down estimation.

Another important decision during project effort estimation is which particular prediction method we should best employ or whether we should better use multiple alternative methods and find consensus between their outcomes.

In this chapter, we introduce top-down and bottom-up estimation strategies together with their strengths and weaknesses. For bottom-up estimation, we provide approaches for aggregating bottom-up effort estimates into a total project estimate. In addition, we discuss the usage of multiple alternative estimation methods—instead of a single one—and present approaches for combining alternative estimates into a unified final estimate. In Chap. 7, we discuss challenges in selecting the most suitable estimation method and we propose a comprehensive framework for addressing this issue.

5.1 Top-Down Estimation Approach

...the purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise.

—Edsger W. Dijkstra
In top-down estimation, we predict total project effort directly, that is, we estimate summary effort for all project development activities and for all products that the project delivers. We may then break down the total project estimate into the effort portions required for finishing individual work activities and for delivering individual work products. For instance, in analogy-based estimation, a new project as a whole is compared with previously completed similar projects, the so-called project analogs. We adapt the effort we needed in the past for completing project analogs as an effort prediction for the new project. After that we may distribute estimated total effort over individual project activities based on, for example, the percentage effort distribution we observed in historical projects. Another way of determining effort distribution across project work activities is to adapt one of the common project effort distributions other software practitioners have published in the related literature based on their observations across multiple—possibly multiorganizational—software projects. Examples of such distributions include Rayleigh, Gamma, or Parr’s distributions, which we illustrated in Fig. 2.2 and briefly discussed in Sect. 2.2.2.

Effective project estimation would thus require the collection of historical data not only regarding the overall development effort but also regarding the effort required for completing major project phases or even individual work activities.

Tip

Collect and maintain experiences regarding effort distribution across development phases and activities in your particular context. Consider project domain, size, and development size when reusing effort distributions observed in already completed projects for allocating effort in a new project.

Knowledge of the project’s effort distribution is also useful for purposes other than effort estimation. For example, one of the best practices—reflected by that observed in project effort distributions in practice—is to invest relatively high effort in the early phases of the development, such as requirements specification and design. Such early investment prevents errors in the early stages of the software project and thus avoids major rework in the later phases, where correcting early-project errors might be very expensive. Monitoring the effort distribution across development processes may serve as a quick indicator of improper distribution of project priorities. In this sense, information on effort distribution serves process improvement and project risk analysis purposes.

Tip

Requirements specification and design should take the majority of the project effort. Yet, in practice, testing often takes the major part of project effort. Make sure that you consider all project activities as they occur in the organization with their actual contribution to the overall project effort during project estimation.
5.2 Bottom-Up Estimation Approach

The secret of getting ahead is getting started. The secret of getting started is breaking your complex overwhelming tasks into small manageable tasks, and then starting on the first one.
—Mark Twain

In bottom-up estimation, we typically divide project work into activities (*process-level approach*) or software products into subproducts (*product-level approach*), and then we estimate the effort for completing each project activity or for producing each product component.

At the process level, we determine elementary work activities we want to estimate, size them, and then estimate effort for each of them individually. Total project effort is the aggregate of these bottom-up estimates. The simplest way of aggregating bottom-up estimates is to sum them. In practice, however, we need to consider the form of estimates and their interdependencies when aggregating them into total estimates. Uncritically summing bottom-up estimates may lead to invalid total project prediction. In Sect. 5.3, we discuss common approaches for aggregating bottom-up effort estimates.

5.2.1 Work Breakdown Structure

The *work breakdown structure* (WBS) is a method for identifying work components. It is widely used in the context of effort estimation and relies on hierarchical decomposition of project elements. Figure 5.1 shows an example WBS hierarchy. Three major perspectives of the WBS approach are applied in practice:

- **Deliverable-oriented**: It is a classical approach, defined by PMI (2013), in which decomposition is structured by the physical or functional components of the project. This approach uses major project deliverables as the first level of the work breakdown structure.
- **Activity-oriented**: This approach focuses on the processes and activities in the software project. It uses major life cycle phases as the first level of the work breakdown structure.
- **Organization-oriented**: This approach focuses, similarly to the activity-oriented one, on the project activities, but it groups them according to project organizational structure. This approach uses subprojects or components of the project as the first level of the work breakdown structure. Subprojects can be identified according to aspects of project organization as created subsystems, geographic locations, involved departments or business units, etc. We may consider employing organization-oriented WBS in the context of a distributed development.
In software estimation, a key success factor is to identify all work elements. This aspect is reflected by the most important rule of the WBS, called the 100% rule. The 100% rule was defined by Haugan (2002) and states that the work breakdown structure includes 100% of the work defined by the project scope and captures all deliverables—internal, external, and interim—in terms of work to be completed, including project management. The 100% rule applies at all levels within the WBS hierarchy. It means that the sum of the work at the subnodes must equal 100% of the work represented by the node they are connected to. Moreover, the 100% rule also applies to any perspective of the WBS. For example, for the activity-oriented view, work represented by the activities comprised by a work package must add up to 100% of the work necessary to complete this work package.

As omitted work may have various sources, such as forgotten features and/or forgotten tasks, software practitioners usually use a mixture of WBS perspectives. Yet, we recommend not mixing too many different perspectives at one level of the WBS hierarchy.

Although WBS may consider project activities, it should always focus on “what” is to be done, not “when” it should be done or “who” should do it—these are the subject of the project plan, which is based on the WBS. In other words, a WBS contains no dependencies, durations, or resource assignments.

The top-down WBS creation approach derives a project work breakdown structure by decomposing the overall project work into its subelements. This decomposition continues until work items reach a level where they can be easily and accurately estimated. Example 5.1 presents example steps of the top-down project WBS procedure for the deliverable-oriented perspective. The bottom-up WBS creation approach takes the form of brainstorming, where team members identify all low-level tasks needed to complete the project.

Tips

- The 100 % rule: Work breakdown structure includes 100 % of the work defined by the project scope and captures all deliverables: nothing less but also nothing more.
- Within one level of WBS hierarchy, try to use one consistent perspective: deliverable-oriented, activity-oriented, or organization-oriented.
- Work breakdown structure (WBS) should define “what” is to be accomplished in the project, not “when” it should be done or “who” should do it.

Example 5.1. Top-Down and Bottom-Up Deliverable-Oriented WBS

The PMI’s (2006) “Practice Standard for Work Breakdown Structures” defines major steps of the top-down and bottom-up procedures for creating deliverable-oriented project work breakdown structures. In this example, we specify major steps of both WBS creation procedures based upon the PMI’s standard.

Top-down WBS creation procedure:

1. **Identify project external deliverables:** Identify products which must be delivered by the project in order to achieve its success. This step is achieved by reviewing specifications of project scope. This includes such documents as “Project statement of work” and “Product requirements specification.”

2. **Define project internal deliverables:** Identify and specify all project interim products that are produced during the project but themselves do not satisfy a business need and do not belong to project deliverables.

3. **Decompose project deliverables:** Decompose major project deliverables into lower-level work items that represent stand-alone products. The sum of the elements resulting from such decomposition at each level of the WBS hierarchy should represent 100 % of the work in the element above it. Each work item of the WBS should contain only one deliverable.

4. **Review and refine WBS:** Revise the work breakdown structure until project stakeholders, in particular estimators, agree that project planning can be successfully completed and that project execution and control according to the WBS will result in project success.
Bottom-up WBS creation procedure:

1. **Identify all project deliverables**: Identify all products or work packages comprised by the project. For each work package or activity, exactly one product that it delivers should be identified.
2. **Group deliverables**: Logically group related project deliverables or work packages.
3. **Aggregate deliverables**: Synthesize identified groups of deliverables into the next level in the WBS hierarchy. The sum of the elements at each level should represent 100% of the work below it, according to the 100% rule.
4. **Revise deliverables**: Analyze the aggregated WBS element to ensure that you have considered all of the work it encompasses.
5. **Repeat steps 1 to 4**: Repeat identifying, grouping, and aggregating project deliverables until the WBS hierarchy is complete, that is, until a single top node representing the project is reached. Ensure that the completed structure comprises the complete project scope.
6. **Review and refine WBS**: Review the WBS with project stakeholders, and refine it until they agree that the created WBS suffices for successful project planning and completion.

For more details, refer to PMI’s (2006) “Practice Standard for Work Breakdown Structures.”

The top-down WBS creation approach is generally more logical and fits better to a typical project planning scenario; thus, it is used in practice more often than the bottom-up approach. The bottom-up approach tends to be rather chaotic, consume much time, and often omit some of the low-level work activities. Therefore, as a general rule, we recommend using top-down estimation in most practical situations. The bottom-up WBS creation approach might be useful when used in combination with a top-down approach for identifying redundant and missing work items. Moreover, a bottom-up approach might be useful for revising existing WBS, for instance, in the context of maintenance and evolution of software systems.

Tip

As a general rule, prefer the top-down approach for creating work breakdown structure (WBS). Consider using bottom-up in combination with the top-down approach for identifying redundant and omitted work items.

Table 5.1 summarizes situations, discussed by PMI (2006), when we should consider top-down and bottom-up WBS development procedures.
Validating Outcomes of WBS

One way of validating WBS is to check its elements (work items) if they fulfill the following requirements:

- **Definable**: Can be described and easily understood by project participants.
- **Manageable**: A meaningful unit of work (responsibility and authority) can be assigned to a responsible individual.
- **Estimable**: Effort and time required to complete the associated work can be easily and reliably estimated.
- **Independent**: There is a minimum interface with or dependence on other elements of the WBS (e.g., elements of WBS are assignable to a single control account and clearly distinguishable from other work packages).
- **Integrable**: Can be integrated with other project work elements and with higher-level cost estimates and schedules to include the entire project.
- **Measurable**: Can be used to measure progress (e.g., have start and completion dates and measurable interim milestones).
- **Adaptable**: Are sufficiently flexible, so the addition/elimination of work scope can be readily accommodated in the WBS.
- **Accountable**: Accountability of each work package can be assigned to a single responsible (human resource).
- **Aligned/compatible**: Can be easily aligned with the organizational and accounting structures.

For a more comprehensive list of aspects to be considered when evaluating the quality of a WBS, refer to PMI’s (2006) Practice Standard for Work Breakdown Structures.

Table 5.1 When to use top-down and bottom-up WBS approaches

<table>
<thead>
<tr>
<th>Top-down</th>
<th>Bottom-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project manager and development management team have little or no experience in developing WBS. Top-down procedure allows for progressive understanding and modeling of the project scope.</td>
<td>Project manager and development team have large experience in creating WBS. Team members can easily identify a project’s bottom-up deliverables and follow the bottom-up WBS procedure.</td>
</tr>
<tr>
<td>The nature of the software products or services is not well understood. Creating WBS jointly with project stakeholders using the top-down approach supports the achievement of common understanding and consensus with respect to the project’s nature and scope—especially when they are initially unclear.</td>
<td>The nature of the software products or services is well understood. The project team has past experiences with similar products and services, and has a very good understanding of all interim deliverables required for the project.</td>
</tr>
</tbody>
</table>

(continued)
5.2.2 Method of Proportions

The so-called method of proportions is (after WBS) another popular instantiation of the bottom-up estimation strategy. This method uses estimates or actual values from one or more development phases of a new project as a basis for extrapolating the total development effort. The extrapolation uses a percentage effort distribution over the development phases observed in historical projects, which, at best, are those that are the most similar to the new project.

Example 5.2. Bottom-Up Estimation Using the Method of Proportions

Let us assume the following situation. A project manager estimates software development effort based on user requirements and needs to predict effort required to maintain the developed software for an a priori assumed operation time.

In the first step, the project manager identifies the most relevant characteristics of the new software, especially those that are critical for maintenance of the software. Next, he looks for already completed projects where similar software has been developed and where the maintenance effort is already known.

After analyzing already completed, historical projects, the project manager selects the one most similar (analog) project and analyzes the distribution of development and maintenance effort. He may also select more than one similar project and use their actual efforts for deriving the estimate. Figure 5.2 illustrates example effort distributions for historical and new projects. The project manager analyzes the percentage distribution of the total life cycle effort among the development and maintenance phases. Assuming that maintenance in the new project will take the same percentage of total effort as in the historical project, he extrapolates the maintenance effort of the new project based on its estimated
development effort. Since the planned maintenance period of the new project is shorter than the actual maintenance in the historical project, the project manager additionally looks at what portion of the maintenance effort in the historical project was consumed in the planned period and plans the appropriate amount of effort for the new project’s maintenance.

5.3 Aggregating Component “Bottom” Estimates

In engineering, as in other creative arts, we must learn to do analysis to support our efforts in synthesis.

—Gerald J. Sussman

In the context of bottom-up estimation, the question of aggregating component “bottom” estimates into the total “upper” prediction arises. In the terminology of set theory, the aggregation operation on component “bottom” estimates would correspond
to the union (sum) operation on sets. A simple approach for synthesizing “bottom” estimates can be by just summing them together. Yet, in practice, such simple and “intuitive” methods may often lead to invalid results. Moreover, a number of questions may arise such as, for instance, how to aggregate range estimates? In this section, we discuss alternative approaches for aggregating multiple component estimates.

5.3.1 Aggregating Component Point Estimates

In the context of point estimation, the simple sum of component effort seems to be the most reasonable choice; yet, it may lead to strange results. There are a few issues we should not ignore before deciding on the particular approach for aggregating point estimates.

One issue to consider is that improper decomposition of project work may result in omitted and/or redundant activities and, in consequence, lead to under- or overestimations (we discuss work decomposition in Sect. 5.2). If we know from experience that we consequently tend to under- or overestimate, we should consider this before summing up component estimates. Simple summation will also accumulate our estimation bias—either toward under- or overestimates.

Yet, we might be lucky if we tend to approximately equally under- and overestimate. In this case, mutual compensation of prediction error made on the level of individual “bottom” estimates may lead to quite accurate total estimates—even though component estimates were largely under- and overestimated. In statistics, this phenomenon is related to the so-called law of large numbers. Its practical consequence is that whereas the error of a single total prediction tends to be either under- or overestimated, for multiple estimates some of them will be under- and some overestimated. In total, the errors of multiple component predictions tend to compensate each other to some degree.

So far so good—we may think. Although imperfect decomposition of work items may lead to estimation uncertainties, the law of large numbers works to our advantage. Well, not quite, and as usual, the devil is in the details. There are a few details that need consideration here. First, distribution of estimates is typically consistently skewed toward either under- or overestimates. Moreover, the number of component estimates is quite limited in real situations and restricts applicability of the law of large numbers. Second, bottom-up estimation is typically applied in the context of expert-based prediction where human experts tend to implicitly (unconsciously) assign certain confidence levels to the point estimates they provide. In this case, the probability of completing the whole project within the sum of efforts estimated individually for all its component activities would be the joint probability of each activity completing within its estimated effort. According to probability theory, this would mean not summing up but multiplying probabilities associated to individual estimates of each component activity.

Let us illustrate this issue with a simple example. We estimate the “most likely” effort needed for completing ten project activities, which we identified in the project work breakdown structure. “Most likely” means that each estimate is
50% likely to come true; that is, we believe each activity will be completed within its estimated effort with 50% probability. In order to obtain the joint probability of completing all the ten project activities—that is, completing the whole project—we need to multiply probabilities associated to each individual “bottom” estimate. It occurs that the probability of completing the project within estimated summary effort would be merely 0.1%.

A solution to the problem of summing up component point estimates is to involve estimation uncertainty explicitly into the aggregation process. A simple way of doing this is to collect minimum (“best-case”), most likely, and maximum (“worst-case”) estimates for individual work items, aggregate them as probability distributions, and then compute total expected value, for example, as a mean over the resulting distribution. We discuss aggregating range and distribution estimates in the next section (Sect. 5.3.2).

In conclusion, we should avoid simply summing point estimates, especially when we suspect there are certain confidence levels associated with them. In essence, we should actually avoid both point estimates and aggregating them by simple summation. Whenever possible, we should include uncertainty into estimates and combinations of such estimates.

Tip

> When applying bottom-up estimation, explicitly consider estimation uncertainty and be aware of statistical subtleties of aggregating such predictions.

5.3.2 Aggregating Component Range Estimates

There are several approaches for aggregating uncertain component estimates. The exact approach applies probability theory to formally aggregate probability density functions of the variables represented by uncertain estimates. The approximate approach includes applying simulation techniques. In the next paragraphs, we present example aggregation methods for each of these two approaches.

Exact Approach: Sum of Random Variables

One way of aggregating estimates specified in terms of probability distributions is to apply mechanisms provided by probability theory for summing random variables. In probability theory, the distribution of the sum of two or more independent, identically distributed random variables is represented by the so-called convolution of their individual distributions.

Many commonly used probability distributions have quite simple convolutions. For example, the sum of two normal distributions $X \sim (\mu_x, \sigma_x^2)$ and $Y \sim (\mu_y, \sigma_y^2)$ is a normal distribution $Z \sim (\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$, where μ and σ^2 represent the distribution mean and variance, respectively.
Constraints on Summing Multiple Random Variables

Sums of multiple random variables require that

1. They have identical distributions, that is, all aggregated bottom estimates are specified using the same probability distribution, and
2. They are independent, that is, the probability of a particular bottom effort estimate does not depend on the probability of other estimates.

Although the independency of component estimates is a desired property of bottom-up estimation, it may not always be provided. In the case of dependent estimates, dedicated approaches proposed by probability theory should be applied.

Exact discussion of these mechanisms is beyond the scope of our discussion and can be found in a number of publications on probability theory, for example, in Grinstead and Snell (2003).

Example 5.3 illustrates the practical application of the sum of random variables for aggregating bottom estimates provided by human experts. In this example, component estimates represent random variables with beta-PERT distribution.

Example 5.3. Program Evaluation and Review Technique (PERT)

Stutzke (2005) proposes applying the Program Evaluation and Review Technique (PERT) for aggregating bottom estimates provided by human experts. In PERT, the estimator provides component (“bottom”) estimates in terms of three values: the minimal, the maximal, and the most likely effort. It is assumed that these values are unbiased and that the range between minimal and maximal estimates corresponds to six standard deviation limits of the distribution. In other words, the effort estimate is assumed to be a random variable with associated beta-PERT probability distribution (as we discussed briefly in Sect. 4.4 and illustrated in Fig. 4.5).

As per probability theory, we assume mutual independence of component estimates. Following this assumption, the convolution of individual distributions is computed, in that total expected estimate (mean) is a sum of individual expected estimates (5.1), and total variance is computed as a sum of variances on individual estimates. Total standard deviation is then computed as a root square from the total variance (5.2).

\[
\text{Expected}_{\text{Total}} = \sum_{i=1}^{n} \text{Expected}_{i}, \text{ for } n \text{ component estimates} \quad (5.1)
\]

where

\[
\text{Expected}_{i} = \frac{\text{Min}_{i} + 4 \cdot \text{ML}_{i} + \text{Max}_{i}}{6}
\]
\(\sigma_{\text{Total}} = \sqrt{\sum_{i=1}^{n} \sigma_i^2} \)

where

\(\sigma_i = \frac{\text{Max}_i - \text{Min}_i}{6} \)

McConnell (2006) noted that the PERT’s assumption regarding the standard deviation being equal to the 1/6 range between a minimum and a maximum (5.2) has little to do with the reality of human-based estimation, in which beta-PERT is commonly applied. In order for this assumption to be true, 99.7% of all true effort outcomes would need to fall into the estimation range. In other words, in 3 cases out of 1,000, actual project effort could fall outside the range between minimal and maximal estimates—which is simply unrealistic!

McConnell suggests a more realistic—in his opinion—approach for computing standard deviation from best and worst cases, in which an individual range is divided by a number closer to 2 rather than to 6. He proposes using a modified divisor (5.3), which is based on individual performance of the estimator:

\[\sigma = \frac{\text{Max} - \text{Min}}{\text{Modified divisor}} \]

Table 5.2 Modified divisors for standard deviation of beta-PERT distribution (McConnell 2006)

<table>
<thead>
<tr>
<th>Percentage of actual estimates within estimated range (historical data)</th>
<th>Divisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 %</td>
<td>0.25</td>
</tr>
<tr>
<td>20 %</td>
<td>0.51</td>
</tr>
<tr>
<td>30 %</td>
<td>0.77</td>
</tr>
<tr>
<td>40 %</td>
<td>1.0</td>
</tr>
<tr>
<td>50 %</td>
<td>1.4</td>
</tr>
<tr>
<td>60 %</td>
<td>1.7</td>
</tr>
<tr>
<td>70 %</td>
<td>2.1</td>
</tr>
<tr>
<td>80 %</td>
<td>2.6</td>
</tr>
<tr>
<td>90 %</td>
<td>3.3</td>
</tr>
<tr>
<td>99 %</td>
<td>6.0</td>
</tr>
</tbody>
</table>

In order to determine target effort (budget), we need to consider the predicted effort for a certain confidence level; that is, the percentage confidence that the actual effort will not exceed the estimate. For this purpose, we consider the expected value (statistical mean) and the standard deviation of effort estimates. In
In order to simplify calculations, we take advantage of certain laws of probability theory, in particular the central limit theorem, which states that the sum of many independent distributions converges to a normal distribution as the number of component distributions increases.

Assuming Normal Distribution: Exact Approach

In practice, we do not make a significant error by assuming the total estimate is normally distributed. On the one hand, the sum of independent distributions converges to the normal curve very rapidly. Moreover, the error we make by approximating normal distribution is small compared to the typical estimation accuracy objectives, for example, ±20%.

For a one-tailed normal distribution, the probability that the actual effort value will not exceed a certain target value is illustrated in Fig. 5.3.

We set the target as the expected value \(\mu \) plus/minus \(n \) times the value of the standard deviation \(\sigma \), where \(n \) is associated with target probability (5.4):

\[
\text{Expected effort} = \mu \pm t \cdot \sigma
\]

(5.4)

Table 5.3 provides an example set of calculations for selected percentage confidence levels proposed by McConnell (2006).

One general threat of the simple PERT method proposed by McConnell (2006) is that the expected effort (mean) must truly be 50% likely. It is thus important to monitor actual effort data and control if they underrun component estimates just as often as they overrun them. If not, the aggregated effort will not be accurate and the estimation error will reflect the disproportion between component under- and overestimates.
Approximate Approach: Simulation

The exact method for aggregating uncertain estimates may involve complex mathematical formulas. Therefore, approximate approaches based on simulation techniques have alternatively been proposed.

Total effort estimate can be approximated by applying simulation techniques, such as Monte Carlo, on component estimates. Let us briefly explain how simulation-based aggregation works. Figure 5.4 illustrates the process of aggregating three component effort estimates provided in the form of triangular distributions. In each single simulation run, a crisp effort value is randomly sampled from each one of the component estimates. In our example, a single simulation run results in three discrete effort values. The values sampled in a single run are then summed up to a discrete total effort value on the simulation output. This process is repeated multiple times, for example, 1,000 runs. As a result, a probability distribution of total effort estimate is obtained.

Assuming Normal Distribution: Simulation Approach

Similar to the exact approach, in which we analytically determine sums of probability distributions, in the case of simulation, the central limit theorem also works to our advantage. In consequence, we may assume that the sum of many independent distributions converges to a normal distribution as the number of component distributions increases. In fact, we may already observe this phenomenon for the example sum of three distributions presented in Fig. 5.4. The resulting summary distribution takes the form of a bell-shaped normal distribution.
An example estimation method that actually uses simulation for integrating multiple uncertain bottom estimates was proposed by Elkjaer (2000) in the context of expert-based estimation. His method, called Stochastic Budgeting Simulation, employs random sampling to combine the effort of individual effort items, such as work products or development activities, specified by experts in terms of triangular distributions.

5.4 Selecting Appropriate Estimation Strategy

An intelligent plan is the first step to success. The man who plans knows where he is going, knows what progress he is making and has a pretty good idea when he will arrive.

—Basil S. Walsh

Depending on the particular project application context, both top-down and bottom-up approaches for project effort estimation have various advantages and disadvantages.

Estimation Strategy and Estimation Method

In the related literature, top-down and bottom-up estimations are often referred to as estimation methods. In our opinion, top-down and bottom-up approaches refer more to an overall estimation strategy rather than to a particular estimation method. In principle, any estimation method, such as regression analysis or expert judgment, can be used within any of these two strategies; although not every estimation method is equally adequate and easy to apply within each of these two strategies.
In Table 5.4, we summarize the most relevant strengths and weaknesses of both estimation strategies. Note, however, that particular characteristics should always be considered in a particular context, in which you want to apply them.

In general, top-down estimation lets us obtain estimates for project phases or tasks even though we do not have enough data to perform such estimation for each phase or task separately. The bottom-up approach lets us limit the estimation...
abstraction level. It is especially useful in the case of expert-based estimation, where it is easier for experts to embrace and estimate smaller pieces of project work. Moreover, the increased level of detail during estimation—for instance, by breaking down software products and processes—implies higher transparency of estimates.

In practice, there is a good chance that the bottom estimates would be mixed below and above the actual effort. As a consequence, estimation errors at the bottom level will cancel each other out, resulting in smaller estimation error than if a top-down approach were used. This phenomenon is related to the mathematical law of large numbers. However, the more granular the individual estimates, the more time-consuming the overall estimation process becomes.

In industrial practice, a top-down strategy usually provides reasonably accurate estimates at relatively low overhead and without too much technical expertise. Although bottom-up estimation usually provides more accurate estimates, it requires the estimators involved to have expertise regarding the bottom activities and related product components that they estimate directly.

In principle, applying bottom-up estimation pays off when the decomposed tasks can be estimated more accurately than the whole task. For instance, a bottom-up strategy proved to provide better results when applied to high-uncertainty or complex estimation tasks, which are usually underestimated when considered as a whole. Furthermore, it is often easy to forget activities and/or underestimate the degree of unexpected events, which leads to underestimation of total effort. However, from the mathematical point of view (law of large numbers mentioned), dividing the project into smaller work packages provides better data for estimation and reduces overall estimation error.

Experiences presented by Jørgensen (2004b) suggest that in the context of expert-based estimation, software companies should apply a bottom-up strategy unless the estimators have experience from, or access to, very similar projects. In the context of estimation based on human judgment, typical threats of individual and group estimation should be considered. Refer to Sect. 6.4 for an overview of the strengths and weaknesses of estimation based on human judgment.

Tip

> Developers typically tend to be optimistic in their individual estimates (underestimate). As a project manager, do not add more optimism by reducing the developers’ estimates.

1 In statistics, the law of large numbers says that the average of a large number of independent measurements of a random quantity tends toward the theoretical average of that quantity. In the case of effort estimation, estimation error is assumed to be normally distributed around zero. The consequence of the law of large numbers would thus be that for a large number of estimates, the overall estimation error tends toward zero.
In both strategies, the ability of the software estimation method and/or model to transfer estimation experience from less similar projects leads to equally poor estimates. In other words, lack of quantitative experiences from already completed projects leads to poor predictions independent of whether the data-driven method estimates the whole project or its components.

In summary, although the bottom-up approach intuitively seems to provide better data for estimation, the selection of the proper strategy depends on the task characteristics and the level of the estimators’ experience. In principle, one should prefer top-down estimation in the early (conceptual) phases of a project and switch to bottom-up estimation where specific development tasks and assignments are known.

Tip

- Prefer top-down estimation in the early (conceptual) phases of a project and switch to bottom-up estimation where specific development tasks and assignments are known. Consider using top-down estimation strategy for cross-checking bottom-up estimates (and vice versa).

Finally, whenever accurate estimates are relatively important and estimation costs are relatively low, compared to overall project effort, we recommend using both estimation strategies for validation purposes.

5.5 Using Multiple Alternative Estimation Methods

In combining the results of these two methods, one can obtain a result whose probability of error will more rapidly decrease.

—Pierre Laplace

A number of effort estimation methods have been proposed over the recent decades. Yet, no “silver-bullet” method has been proposed so far, and it is actually hard to imagine that such a “one-size-fits-all” estimation method will ever be created. Each and every estimation method has its own specific strengths and limitations, which depend on the particular situation in which the method is used. The most important consequence of this fact is that a combination of different estimation approaches may substantially improve the reliability of estimates.

In practice, there are two ways of implementing the idea of combining multiple estimation methods or paradigms:

- **Hybrid estimation method**: In this approach, elements of different estimation paradigms, for example, expert-based and data-driven estimation, are integrated within a hybrid estimation method. Hybrid estimation may use alternative information sources and combine multiple elementary techniques into a single estimation method, which typically represents alternative estimation paradigms. We discuss hybrid estimation methods in Sect. 6.5.
• **Multiple alternative methods:** In this approach, multiple alternative methods are applied independently to estimate the same work, and their outcome estimates are combined into a final estimate. Similar to hybrid estimation, multiple alternative methods should preferably represent different estimation paradigms and be based on alternative, yet complementary, information sources.

A major benefit of using multiple estimation methods is the possibility of validating alternative estimates against each other. In the case of significantly inconsistent estimates, we may investigate sources of potential discrepancies between alternative estimates, improve them if possible, and combine them when they start to converge.

Tip

In order to validate and improve prediction accuracy, combine estimates provided by several methods that represent substantially different estimation paradigms and use different sources of information.

A major drawback of using alternative estimation methods is the large overhead required to perform multiple estimations with different methods. We should therefore consider using multiple estimation methods and combining alternative estimates only when

• It is very important to avoid large estimation errors. For example, we know that the cost of potential prediction error is much higher than the cost of applying multiple estimation methods.
• We are uncertain about the situation in which the estimation method is to be applied. For example, the project environment has not been precisely specified yet, and estimation inputs and constraints are not clear.
• We are uncertain about which forecasting method is more accurate. Since, in most cases, we are uncertain about which method is the most accurate, it is always good to consider the use of several methods.
• There is more than one reasonable estimation method available. In practice, we recommend using two alternative methods that differ substantially with respect to the estimation paradigm and to use different sources of information.

5.6 Combining Alternative Estimates

Based on the extensive evidence in favour of combining estimates the question should not be whether we should combine or not, but how?

—Magne Jørgensen

When using multiple estimation methods, we must face the issue of combining multiple effort estimates that these methods provide into a single final prediction. In contrast to combining component estimates in the context of bottom-up estimation
(Sect. 5.3) where we summed up partial estimates, in the context of applying multiple estimation methods, we are interested in finding a consensus between multiple estimates. Using the terminology of set theory, combining multiple alternative estimates would correspond to the intersection operation.

5.6 Combining Alternative Estimates

5.6.1 Combining Largely Inconsistent Estimates

In practice, uncritically combining estimates that differ widely may lead to significant errors. We may consider using sophisticated methods for avoiding the impact of outlier estimates. Yet, outlier analysis requires several values, whereas in practice, we will typically have two or three alternative values. Moreover, in the case of outlier analysis, it is not clear if estimates identified as outliers are not the correct ones that should not be excluded from consideration. The simple “majority” rule does not apply to software effort estimation. We need to consider if each individual estimate may be right and then decide on the combined estimate. Therefore, before combining estimates, one should investigate possible sources of discrepancy between outputs of alternative estimation approaches.

At best, estimation should be repeated after potential sources of inconsistencies have been clarified. This process can be repeated until estimates converge and the observed discrepancy is not greater than 5%. Then, an appropriate aggregation approach should be selected and applied to come up with final effort estimates. In an extreme case, excluding an estimation method that provides outlier estimates should be considered if the sources of deviation are clear and nothing can be done to improve the convergence of estimates. Yet, this option should be considered very carefully as it may occur that extreme estimates were the most exact ones.

Tip

If estimates provided by alternative methods differ widely, then investigate the reasons for this discrepancy, before combining the estimates. Continue investigating the reasons for discrepancy between estimates provided by alternative methods until the estimates converge to within about 5%. Exclude individual estimation methods from the prediction process if necessary, for example, if they clearly provide incorrect estimates and nothing can be done to improve them. Combine alternative estimates when they start to converge.

5.6.2 Combining Alternative Point Estimates

Statistical Techniques

Common statistical means for combining multiple point estimates include taking a simple mean or mode value over a number of individual estimates. Yet, individual
forecasts may be burdened by large errors, for example, due to miscalculations, errors in data, or misunderstanding of estimation scope and context. In such cases, it is useful to exclude the extremely high and extremely low predictions from the analysis.

Example statistical means that deal with extreme values—so-called outliers—include trimmed means or medians. A less radical approach for handling deviations between individual estimates would be by applying a weighted average, where weights reflect the believed credibility of each estimate. In the case of expert-based estimation, these weights may reflect the experts’ level of competence regarding the estimated tasks. When combining predictions provided by data-driven and expert-based methods, higher weight may be assigned to data-driven estimates if a large set of high-quality data is available, or to expert-based methods, otherwise—especially when highly experienced estimators are involved. We recommend, after Armstrong (2001), using equal weights unless strong evidence or belief exists to support unequal weighting.

Tip

- When combining multiple estimates by means of weighted average, use equal weights unless you have strong evidence to support unequal weighting of alternative estimates.

Expert Group Consensus

As an alternative to a statistical approach, we may combine multiple alternative effort estimates in a group consensus session. In this approach, alternative estimates are discussed within a group of human experts, where each expert typically represents one individual estimate. As a result of discussion, experts come up with a consensus regarding the final estimate.

Although it can theoretically be applied for any estimation method, the group consensus approach is typically applied in the context of estimation based on human judgment (Sect. 6.4.2). In this context, alternative estimates are provided by individual human experts and then combined in the group discussion.

A group debate might have the form of an unstructured meeting or follow a systematic process, such as one defined by existing group consensus techniques. Examples of the structured group discussion techniques are *Wideband Delphi* (Chap. 12) or, created in the context of agile development, *Planning Poker* (Chap. 13).

The performance of individual group consensus methods typically varies depending on the characteristics of the group, such as motivation of involved experts, their social relations, and communication structure in a group. A common threat is human and situational bias of a group discussion. We address these problems in Sect. 6.4.3, where we discuss effort estimation methods based on group discussion.
Also, characteristics of tasks estimated have an impact on the performance of different group discussion techniques. For example, Haugen (2006) observed that for tasks that experts were familiar with, the planning poker technique delivered more accurate estimates than unstructured combination—the opposite was found for tasks with which experts were unfamiliar.

In the context of expert-based effort estimation, statistical combination of individual experts’ estimates was, surprisingly, found less effective than combining them in a group discussion process. Moløkken-Østvold et al. (2004, 2008) observed that group estimates made after an unstructured discussion were more realistic than individual estimates derived prior to the group discussion and combined by statistical means. It is the group discussion that seems to be the key factor reducing the overoptimism in individual estimates. Thus, even taking a simple average, that is, a statistical mean, of individual estimates should often work well under the condition that they were provided after a group discussion. We generally advise conducting an unstructured discussion before experts provide their individual estimates and before we combine these estimates.

Tip

When considering multiple expert estimates, perform a group discussion session before combining individual estimates—indeed independent of the approach used to combine alternative estimates.

5.6.3 Combining Alternative Range Estimates

Statistical Techniques

A simple statistical approach for combining alternative range estimates might be by taking an average, that is, a statistical mean, of the individual minimum and maximum predictions. This approach seems to work well in many practical situations. For example, Armstrong (2001) observed in a number of empirical studies that predictions based on the simple mean across all individual predictions were on average 12.5% more accurate than the mean of a single randomly selected prediction.

Yet, combining estimates by means of a simple average has been observed ineffective in the context of estimates based on human judgment, where prediction intervals tend to be too narrow and not to correspond to the confidence level believed by the experts. For example, experts believed to provide estimates of 90% confidence, whereas the actual confidence level represented by intervals they provided was about 70%. In such situations, applying a simple average over individual minimums and maximums does not improve correspondence between believed and actual confidence levels, that is, it does not deal with overoptimism of the individual estimates.

Jørgensen and Moløkken (2002) observed that in the context of expert-based estimation, taking the maximum and minimum of individual maximum and minimum predictions is much more effective than taking averages. In this approach,
overoptimism of individual estimates is reduced by taking the widest interval over all estimates. Figure 5.5 illustrates both average and min-max approaches for combining alternative expert-based estimates. Note that in both cases, most likely estimates are combined by way of simple statistical mean.

Expert Group Consensus

Similarly to combining point estimates, a group consensus approach seems to be again a more effective way of synthesizing expert estimates than “automatic” statistical approaches. In a group consensus approach, final estimates are agreed upon in a group discussion. Although group consensus can be applied to combine any estimates, it is typically applied in the context of expert-based estimation; that is, for synthesizing alternative estimates provided by human experts. A group debate might have the form of an unstructured meeting or follow a systematic process defined by one of the existing group consensus techniques such as *Wideband Delphi* or *Planning Poker*. We present these methods in Chaps. 12 and 13, respectively.

Simulation Techniques

Similar to combining multiple component estimates in the context of bottom-up estimation (Sect. 5.3), alternative estimates provided by different prediction
methods can also be combined using simulation approaches. However, other than in the case of bottom-up estimation, we are not looking for a sum of partial estimates but for their consensus, that is, their intersection in set terminology.

Figure 5.6 illustrates the process of finding consensus between three alternative effort estimates provided in the form of triangular distributions. Each single simulation run consists of two steps. First, a single effort distribution is selected randomly from among the alternative distributions considered. Next, a single crisp effort value is randomly sampled from the distribution selected in the first step. As a result, the final consensus effort distribution consists of multiple independent effort samples originating from distinct input effort distributions, other than in case of aggregating component “bottom” estimates where the final effort distribution consists of effort values computed as a sum of samples originating from all input effort distributions (Sect. 5.3.2, Fig. 5.4). Based on the outcome effort distribution, a final estimate is determined; for instance, using the cumulative distribution, we select the effort value (or range of values) that has a satisfactorily high probability of not being exceeded in the project. Refer to Sect. 4.4.1 for a discussion on interpreting effort probability distributions.
Determining Sampling Likelihood

While the probability of sampling particular crisp effort values from an input distribution is determined by the distribution shape, the probability of selecting the individual input distribution needs to be determined manually up front. In a simple case, all inputs are assigned equal likelihood of being picked up, that is, the selection follows according to a uniform discrete probability distribution.

Yet, we may want to prefer particular input estimates over others and, thus, to perform selection according to another schema represented by a specific discrete probability distribution. For example, when finding consensus between predictions provided by human experts and data-driven algorithmic methods, we might prefer expert estimates because of low reliability of quantitative data on which the data-driven predictions were based. And vice versa, we might prefer data-driven estimates because they were based on large sets of reliable data, whereas human estimates have little domain and prediction experience.

Further Reading

 In Chaps. 11 and 12 of his book, the author discusses bottom-up and top-down estimation strategies, respectively. Example techniques for implementing both estimation strategies are described. The author also discusses threats in making effort-time trade-offs and schedule compression.

 The practice standard provides a summary of best practices for defining work breakdown structures. It provides an overview of the basic WBS process, criteria for evaluating the quality of WBS, and typical considerations needed when defining WBS. Finally, the standard provides a number of example work breakdown structures from various domains, including software development and process improvement.

 In their book, the authors discuss approaches for creating project work breakdown structures and identifying project activities in the context of project management. In Chap. 8, they present top-down and bottom-up strategies for creating project-oriented WBS and show different WBS approaches that
implement these strategies. In Chap. 9, the authors show how to populate a WBS to identify project activities and tasks relevant for effective project planning.

 This standard provides a process for creating a process for governing software development and maintenance. It lists common software development life cycle phases, activities, and tasks. The standard does not imply or presume any specific life cycle model.

 Similar to the IEEE 1074 standard, this international standard aims at specifying a framework for software life cycle processes. Yet, it comprises a wider range of activities regarding life cycle of software/system product and services. It spans from acquisition, through supply and development, to operation, maintenance, and disposal. Similar to IEEE 1074, this standard also does not prescribe any particular life cycle model within which proposed phases and activities would be sequenced.

 The author investigates strengths and weaknesses of top-down and bottom-up strategies in the context of expert-based effort estimation. In his industrial study, the author asked seven teams of estimators to predict effort for two software projects, where one project was to be estimated using a top-down strategy and the other using a bottom-up strategy. In the conclusion, the author suggests applying a bottom-up strategy unless estimators have experience from, or access to, very similar historical projects.

 This short article documents a panel discussion regarding the role of expert judgment and data analysis in software effort estimation. Panelists underline the thesis that “there is nothing like judgment-free estimation” but also stress the importance of quantitative historical information for software estimation.

This article provides a comprehensive review of published evidence on the use of expert judgment, formal methods, and hybrid methods for the purpose of software project effort estimation. The final conclusion is that combining model- and expert-based approaches works principally better than either one alone.

 In Sect. 5.2 of his article, the author provides an overview of various approaches for combining multiple estimates provided by human experts. In addition, he discusses typical factors on which benefits of combining multiple expert estimates depend.

 The authors investigate an empirical study of three strategies for combining multiple, interval estimates: (1) average of the individual minimum and maximum estimates, (2) maximum and minimum of the individual maximum and minimum estimates, and (3) group discussion of estimation intervals. Results of the study suggest that a combination of prediction intervals based on group discussion provides better estimates than “mechanical” combinations. Yet, the authors warn that there is no generally best strategy for combining prediction intervals.
Software Project Effort Estimation
Foundations and Best Practice Guidelines for Success
Trendowicz, A.; Jeffery, R.
2014, XXII, 469 p. 86 illus., Hardcover
ISBN: 978-3-319-03628-1