Contents

1 **Theoretical Background** ... 1
 1.1 Introduction .. 1
 1.2 Induction Heating ... 2
 1.3 Direct Resistance Heating 2
 1.4 Basic Electromagnetic Phenomena 3
 1.4.1 Maxwell Equations 3
 1.4.2 Theorem and Poynting’s Vector 5
 1.4.3 Phenomena Affecting the Current Density
 Distribution in Conductors 8

References .. 22

2 **Electromagnetic Field in Workpieces with Flat Surfaces** 23
 2.1 Semi-infinite Body of Homogeneous Material 23
 2.1.1 Induction Heating 23
 2.1.2 Resistance Heating 36
 2.2 Semi-infinite Body of Ferromagnetic Material 40
 2.3 Infinite Metal Slab of Homogeneous Material 51
 2.3.1 Induction Heating by a Flat Inductor on One Side
 of the Workpiece 51
 2.3.2 Metal Slab in Longitudinal Flux Inductor
 (Exciting Magnetic Field on Both Sides
 of the Workpiece) 58
 2.3.3 Direct Resistance Heating 65
 2.4 Slab of Rectangular Cross-Section 71
 2.4.1 Induction Heating 71
 2.4.2 Energy in Slabs of Rectangular Cross-Section 76
 2.4.3 Direct Resistance Heating 80
 2.5 Slab of Magnetic Material 82
 2.5.1 Induction Heating 82
 2.5.2 Resistance Heating 83

References .. 83

vii
3 Electromagnetic Field in Cylindrical Bodies

3.1 Solid Cylindrical Workpieces of Homogeneous Material

3.1.1 Induction Heating of Cylindrical Workpieces

3.1.2 Direct Resistance Heating

3.2 Solid Cylindrical Workpieces of Ferromagnetic Material

3.2.1 Direct Resistance Heating

3.2.2 Induction Heating Solid Ferromagnetic Cylinder

3.3 Hollow Cylindrical Workpieces of Homogeneous Material

3.3.1 Induction Heating with Internal and External Exciting Magnetic Field

3.3.2 Induction Heating with External Exciting Magnetic Field

3.3.3 Induction Heating of Hollow Cylindrical Workpieces with Internal Inductors

3.3.4 Resistance Heating of Cylindrical Hollow Workpieces

3.4 Hollow Cylindrical Workpieces of Ferromagnetic Material

3.4.1 Induction Heating

3.4.2 Resistance Heating

References

4 Special Problems in Induction and Resistance Heating

4.1 Resistance Heating of Ferromagnetic Workpieces of Rectangular Cross-section

4.1.1 Influence of Power Supply Circuit on Heating Transient

4.2 Curved Conductors with Cylindrical Cross-Section

4.2.1 Electromagnetic Processes in Toroidal Conductors of Circular Cross-section

4.2.2 Resistance Heating of Curved Cylindrical Work-Pieces

4.2.3 Equalization of Temperature Distribution in the Cross-section of Bent Conductors

4.3 Transverse Flux Induction Heating

4.3.1 Preliminary Choice of Design Parameters

4.3.2 Final TFH System Characteristics

4.3.3 Calculations of Heating Transients

4.3.4 Other Inductor Geometries

4.3.5 Recent Developments and Conclusions

4.4 Planar Circular Coils for Induction Heating

4.4.1 Analytical Solutions

4.4.2 Examples of Results Obtained with the Analytical Solution

4.4.3 Examples of Numerical Results
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Induction Heating of “Long” Cylindrical Workpieces with Inductors of Finite Axial Length</td>
<td>200</td>
</tr>
<tr>
<td>4.6</td>
<td>Pulse Induction Hardening of Complex Workpieces</td>
<td>214</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Introduction</td>
<td>214</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Single-Frequency Processes</td>
<td>215</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Dual-Frequency Processes</td>
<td>220</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Gear Spin Hardening: Main Factors Influencing the Process</td>
<td>227</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Numerical Simulations and Results</td>
<td>230</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Conclusions</td>
<td>241</td>
</tr>
<tr>
<td>4.7</td>
<td>Induction Heating of Cylindrical Billets Rotating in DC Magnetic Field</td>
<td>242</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Introduction</td>
<td>242</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Electromagnetic Solution for the Infinitely Long Geometry</td>
<td>244</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Heating Parameters</td>
<td>248</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Edge Effect in Finite Length Billet</td>
<td>250</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Influence of Shape and Position of Superconducting Coils</td>
<td>250</td>
</tr>
<tr>
<td>4.7.6</td>
<td>Optimisation of the Heating Process</td>
<td>256</td>
</tr>
<tr>
<td>4.8</td>
<td>Induction Heating with Permanent Magnets</td>
<td>258</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Introduction</td>
<td>258</td>
</tr>
<tr>
<td>4.8.2</td>
<td>FEM Solution</td>
<td>260</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Analytical Solution</td>
<td>261</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Calculation, Experimental Results and Design Optimization</td>
<td>266</td>
</tr>
<tr>
<td>4.9</td>
<td>Inductors for Induction Heating of Internal Cylindrical Surfaces</td>
<td>268</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Inductor Equivalent Resistance</td>
<td>269</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Results of Numerical Analysis</td>
<td>270</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Conclusions</td>
<td>275</td>
</tr>
<tr>
<td>4.10</td>
<td>Electromagnetic Forces</td>
<td>275</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Introduction</td>
<td>275</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Evaluation by Lorentz’s Law of Forces in “Long” Cylindrical Systems</td>
<td>276</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Forces in the Induction Heating of Disk Plates with Planar Circular Coils</td>
<td>284</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Evaluation of Forces by Variation of the Field Energy</td>
<td>289</td>
</tr>
<tr>
<td>4.10.5</td>
<td>Forces in Induction Heating of the Ends of Non-magnetic Bars</td>
<td>290</td>
</tr>
<tr>
<td>4.10.6</td>
<td>Forces in Induction Heating of the Ends of Magnetic Bars</td>
<td>293</td>
</tr>
<tr>
<td>4.10.7</td>
<td>Conclusions</td>
<td>294</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>294</td>
</tr>
</tbody>
</table>
5 Analytical and Numerical Methods for Calculation of Induction and Conduction Heating Systems 303

5.1 Calculation of Induction Heating Systems with the Equivalent Magnetic Circuit Method 303

5.2 Calculation of Induction Heating System with Analytical Methods .. 310

5.3 1D Finite Difference Numerical Solution for Induction Heating .. 312

5.3.1 Electromagnetic Problem Solution 313

5.3.2 Solution of Thermal Problem 315

5.4 Commercial 1D Code ELTA for Induction Heating 317

5.4.1 Case Study 1: Through Heating of Non-magnetic Steel Billets ... 318

5.4.2 Case Study 2: Through Heating of Magnetic Steel Billets ... 323

5.5 VIM: Volume Integral Method of the Mutually Coupled Circuits ... 326

5.6 Calculation of Parameters of Direct Resistance Heating Systems .. 331

5.7 1D Finite Difference Numerical Model for DRH 341

5.7.1 Electromagnetic Problem 342

5.7.2 Examples of Coupled Numerical Solutions 344

5.8 FEM: Finite Element Method 349

5.8.1 Preprocessor ... 351

5.8.2 Solver ... 354

5.8.3 Post Processor ... 354

References .. 358

Index ... 361
Induction and Direct Resistance Heating
Theory and Numerical Modeling
Lupi, S.; Forzan, M.; Aliferov, A.
2015, XIII, 370 p. 276 illus., Hardcover
ISBN: 978-3-319-03478-2