## Contents

1 Hydrocarbon Oxygenation by Heme-Thiolate Enzymes .......................... 1
   1.1 Introduction ................................................. 2
      1.1.1 Cytochrome P450S (CYPs) ................................. 2
      1.1.2 Chloroperoxidase (CPO) .................................. 3
      1.1.3 P450_{SPα} and P450_{BSβ} ............................. 5
      1.1.4 Aromatic Peroxygenase (AaeAPO) .......................... 5
   1.2 Mechanistic Investigations of Intermediates in the Catalytic Cycle ........ 9
      1.2.1 Compound 0 .............................................. 11
      1.2.2 Compound I .............................................. 12
      1.2.3 Compound II .............................................. 12
      1.2.4 Diagnostic Radical Clocks ............................... 13
      1.2.5 Kinetic Isotope Effects .................................. 14
   1.3 Application on the Design of New Biocatalysts with Protein Engineering .......... 15
   1.4 Conclusions .................................................. 16
   References ....................................................... 16

2 Efficient and Selective Alkane Hydroxylation Reactions Catalyzed by the Fungal Peroxygenase AaeAPO .......................... 23
   2.1 Introduction .................................................. 24
   2.2 Results and Discussion ....................................... 25
      2.2.1 Hydroxylation of Alkanes with High Efficiency and Selectivity .............. 25
      2.2.2 Hydroxylation at Benzy1 Position with a High Degree of Stereoselectivity .... 27
      2.2.3 Hydroxylation of Neopentane and Ethane ..................................... 29
      2.2.4 Drug Metabolites ......................................... 30
      2.2.5 Flavin Cofactors and Glucose Oxidase Coenzymes ............................... 33
3 Hydrocarbon Hydroxylations Catalyzed by AaeAPO: Evidence of Radical Intermediates and Kinetic Isotope Effects

3.1 Introduction

3.2 Results and Discussion
   3.2.1 Radical Clocks
   3.2.2 Kinetic Isotope Effect (KIE)

3.3 Conclusions

3.4 Experimental

3.4.1 Synthesis of Substrates and Authentic Samples

References

4 Detection and Kinetic Characterization of a Highly Reactive Heme-Thiolate Peroxygenase AaeAPO Compound I

4.1 Results and Discussion
   4.1.1 Kinetic Characterization of AaeAPO Binding with Substrates
   4.1.2 Detection and Generation of AaeAPO-I
   4.1.3 Kinetic Characterization of AaeAPO-I Towards a Series of Alkanes

4.2 Conclusions

4.3 Experimental

References

5 Driving Force for Oxygen Atom Transfer by Heme-Thiolate Enzymes

5.1 Results and Discussion
   5.1.1 Kinetic Characterization of Compound I Generation by Hypohalous Acids
   5.1.2 Kinetic Characterization of Compound I Reaction with Halide Ions
   5.1.3 Determination the Redox Potential of Compound I and the Nernst Plots
   5.1.4 Implication of Compound I Redox Properties on C–H Activation

5.2 Conclusions

5.3 Experimental

References

6 Detection and Characterization of Heme-Thiolate Compound II from AaeAPO Peroxygenase

6.1 Introduction

6.2 Results and Discussion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>Direct Reductive Generation of AaeAPO-II from AaeAPO-I with Nitroxy1 Radicals</td>
<td>93</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Determination of the Ferryl–OH pKₐ in AaeAPO-II</td>
<td>95</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Kinetic Characterization of AaeAPO-II Towards Alkanes and Phenols</td>
<td>101</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>6.4</td>
<td>Experimental</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>109</td>
</tr>
<tr>
<td>7</td>
<td>Cloning and Expression of AaeAPO from Agrocybe aegerita to E. coli, for Studies of Structure-Function Relationships by Site-Specific Mutagenesis</td>
<td>113</td>
</tr>
<tr>
<td>7.1</td>
<td>Results and Discussions</td>
<td>114</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Purification of Wild Type AaeAPO from Agrocybe aegerita</td>
<td>114</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Construction Plasmids Containing apo Gene for the Over-Expression of AaeAPO in E. coli</td>
<td>115</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Comparison of Several Fungal Heme-Thiolate Enzymes</td>
<td>121</td>
</tr>
<tr>
<td>7.1.4</td>
<td>EPR Spectra of Resting Enzymes</td>
<td>122</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Alkane Hydroxylation Reactivity and Selectivity</td>
<td>124</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Intermediate Generation and Stability</td>
<td>124</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Site-Specific Mutagenesis for the Study of Structure-Function Relationships</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>Conclusions</td>
<td>126</td>
</tr>
<tr>
<td>7.3</td>
<td>Experimental</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>128</td>
</tr>
</tbody>
</table>
A Novel Heme-Thiolate Peroxygenase AaeAPO and Its Implications for C-H Activation Chemistry
Wang, X.
2016, XXXII, 130 p., Hardcover
ISBN: 978-3-319-03235-1