Contents

1 Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology .. 1
Jonathan Blakes, Jamie Twycross, Savas Konur, Francisco Jose Romero-Campero, Natalio Krasnogor and Marian Gheorghe
1.1 Introduction .. 1
1.2 Overview .. 2
 1.2.1 Mathematical Continuous Models 3
 1.2.2 Stochastic Discrete Models 3
 1.2.3 Executable Modeling Formalisms 4
1.3 Lattice Population P Systems 8
1.4 Infobiotics Workbench 14
 1.4.1 Modelling in LPP Systems 16
 1.4.2 Simulation 16
 1.4.3 Model Checking 20
 1.4.4 Optimisation 22
1.5 Case Study .. 25
 1.5.1 LPP Model 26
 1.5.2 Simulations 27
 1.5.3 Model Checking 28
 1.5.4 Supplementary Material 32
1.6 Discussions and Conclusions 33
References ... 36

2 Statistical Model Checking of Membrane Systems with Peripheral Proteins: Quantifying the Role of Estrogen in Cellular Mitosis and DNA Damage 43
Matteo Cavaliere, Tommaso Mazza and Sean Sedwards
2.1 Membrane Systems with Peripheral Proteins 43
 2.1.1 Formal Language Preliminaries 46
 2.1.2 Membrane Systems with Peripheral and Integral Proteins 47
2.2 Statistical Model Checking for Membrane Systems with Peripheral Proteins 53
5 Membrane Systems and Tools Combining Dynamical Structures with Reaction Kinetics for Applications in Chronobiology

Thomas Hinze, Jörn Behre, Christian Bodenstein, Gabi Escuela, Gerd Grünert, Petra Hofstedt, Peter Sauer, Sikander Hayat and Peter Dittrich

5.1 Introduction

5.2 The KaiABC Core Oscillator: A Circadian Clock

5.2.1 Biological Background

5.2.2 Membrane Systems II_{CSM} for Cell Signalling Modules

5.2.3 Applying II_{CSM} to a KaiABC Core Oscillator Model

5.2.4 Simulation Case Study

5.3 Circadian Clocks as Generalised Frequency Control Systems

5.3.1 A Controllable Goodwin-Type Core Oscillator

5.3.2 Chemical Frequency Control by Phase-Locked Loops

5.3.3 Exploring Circadian Clock’s Entrainment Behaviour by Simulation Studies

5.4 Cell Signalling and Gene Regulatory Networks: Logic Circuits in Chronobiological Information Processing

5.4.1 The General Principle of Cell Signalling in vivo

5.4.2 Modelling a Bistable Toggle Switch by a Gene Regulatory Network with Two Feedback Loops

5.4.3 In Vivo Implementation of a Bistable Toggle Switch

5.5 Spatial Rule-Based Simulator Software SRSim at a Glance

5.6 Envisioning an Analysis of Membrane System’s Static and Dynamical Behaviour by a Constrained-Based Approach

5.7 Conclusions

References

6 Biochemical Networks Discrete Modeling Inspired by Membrane Systems

John Jack, Andrei Păun and Mihaela Păun

6.1 Introduction

6.1.1 Modeling with Differential Equations

6.1.2 Stochastic Methods and the Gillespie Algorithm

6.1.3 Improving the Gillespie Algorithm
8 Modelling and Analysis of *E. coli* Respiratory Chain

Adrian Țurcanu, Laurențiu Mierlă, Florentin Ipată, Alin Stefanescu, Hao Bai, Mike Holcombe and Simon Coakley

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>248</td>
</tr>
<tr>
<td>8.2 Background</td>
<td>249</td>
</tr>
<tr>
<td>8.2.1 kP Systems</td>
<td>249</td>
</tr>
<tr>
<td>8.2.2 X-Machines</td>
<td>252</td>
</tr>
<tr>
<td>8.3 General Description of E. coli</td>
<td>252</td>
</tr>
<tr>
<td>8.4 FLAME Simulations of E. coli Respiratory Chain</td>
<td>254</td>
</tr>
<tr>
<td>8.5 A Kernel P System Corresponding to E. coli</td>
<td>257</td>
</tr>
<tr>
<td>8.6 Modelling, Simulation and Verification</td>
<td>258</td>
</tr>
<tr>
<td>8.6.1 Implementation in Event-B for ProB</td>
<td>258</td>
</tr>
<tr>
<td>8.6.2 Implementation in Promela for Spin</td>
<td>260</td>
</tr>
<tr>
<td>8.6.3 Simulation Results</td>
<td>261</td>
</tr>
<tr>
<td>8.6.4 Verification Results</td>
<td>262</td>
</tr>
<tr>
<td>8.6.5 Event-B Versus Promela</td>
<td>264</td>
</tr>
<tr>
<td>8.7 Conclusions</td>
<td>264</td>
</tr>
<tr>
<td>References</td>
<td>265</td>
</tr>
</tbody>
</table>
Applications of Membrane Computing in Systems and Synthetic Biology
Frisco, P.; Gheorghe, M.; Pérez-Jiménez, M.J. (Eds.)
2014, XVII, 266 p. 100 illus., 61 illus. in color., Hardcover
ISBN: 978-3-319-03190-3