Contents

1 Basic Definitions and Concepts of Structural Mechanics and Theory of Graphs ............................................. 1
  1.1 Introduction ........................................................................................................ 1
    1.1.1 Definitions ................................................................................................. 1
    1.1.2 Structural Analysis and Design ............................................................... 4
  1.2 General Concepts of Structural Analysis .................................................. 5
    1.2.1 Main Steps of Structural Analysis ......................................................... 5
    1.2.2 Member Forces and Displacements ....................................................... 6
    1.2.3 Member Flexibility and Stiffness Matrices ............................................. 7
  1.3 Important Structural Theorems .............................................................. 11
    1.3.1 Work and Energy .................................................................................. 11
    1.3.2 Castigliano’s Theorems ........................................................................ 13
    1.3.3 Principle of Virtual Work .................................................................... 13
    1.3.4 Contragradient Principle ..................................................................... 16
    1.3.5 Reciprocal Work Theorem .................................................................. 17
  1.4 Basic Concepts and Definitions of Graph Theory .................................. 18
    1.4.1 Basic Definitions ................................................................................... 19
    1.4.2 Definition of a Graph ............................................................................ 19
    1.4.3 Adjacency and Incidence ..................................................................... 20
    1.4.4 Graph Operations ............................................................................... 20
    1.4.5 Walks, Trails and Paths ....................................................................... 21
    1.4.6 Cycles and Cutsets .............................................................................. 22
    1.4.7 Trees, Spanning Trees and Shortest Route Trees .............................. 23
    1.4.8 Different Types of Graphs ................................................................. 23
  1.5 Vector Spaces Associated with a Graph ............................................... 25
    1.5.1 Cycle Space ......................................................................................... 26
    1.5.2 Cutset Space ......................................................................................... 26
    1.5.3 Orthogonality Property ........................................................................ 26
    1.5.4 Fundamental Cycle Bases .................................................................... 27
    1.5.5 Fundamental Cutset Bases ................................................................. 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Matrices Associated with a Graph</td>
<td>28</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Matrix Representation of a Graph</td>
<td>29</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Cycle Bases Matrices</td>
<td>32</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Special Patterns for Fundamental Cycle Bases</td>
<td>33</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Cutset Bases Matrices</td>
<td>34</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Special Patterns for Fundamental Cutset Bases</td>
<td>34</td>
</tr>
<tr>
<td>1.7</td>
<td>Directed Graphs and Their Matrices</td>
<td>35</td>
</tr>
</tbody>
</table>

| References | | 37   |

| 2      | Optimal Force Method: Analysis of Skeletal Structures | 39   |
| 2.1    | Introduction | 39   |
| 2.2    | Static Indeterminacy of Structures | 40   |
| 2.2.1  | Mathematical Model of a Skeletal Structure | 41   |
| 2.2.2  | Expansion Process for Determining the Degree of Static Indeterminacy | 42   |
| 2.3    | Formulation of the Force Method | 46   |
| 2.3.1  | Equilibrium Equations | 46   |
| 2.3.2  | Member Flexibility Matrices | 49   |
| 2.3.3  | Explicit Method for Imposing Compatibility | 52   |
| 2.3.4  | Implicit Approach for Imposing Compatibility | 53   |
| 2.3.5  | Structural Flexibility Matrices | 55   |
| 2.3.6  | Computational Procedure | 55   |
| 2.3.7  | Optimal Force Method | 60   |
| 2.4    | Force Method for the Analysis of Frame Structures | 60   |
| 2.4.1  | Minimal and Optimal Cycle Bases | 61   |
| 2.4.2  | Selection of Minimal and Subminimal Cycle Bases | 62   |
| 2.4.3  | Examples | 67   |
| 2.4.4  | Optimal and Suboptimal Cycle Bases | 69   |
| 2.4.5  | Examples | 72   |
| 2.4.6  | An Improved Turn Back Method for the Formation of Cycle Bases | 75   |
| 2.4.7  | Examples | 76   |
| 2.4.8  | Formation of $B_0$ and $B_1$ Matrices | 78   |
| 2.5    | Generalized Cycle Bases of a Graph | 82   |
| 2.5.1  | Definitions | 83   |
| 2.5.2  | Minimal and Optimal Generalized Cycle Bases | 85   |
| 2.6    | Force Method for the Analysis of Pin-Jointed Planar Trusses | 86   |
| 2.6.1  | Associate Graphs for Selection of a Suboptimal GCB | 86   |
| 2.6.2  | Minimal GCB of a Graph | 89   |
| 2.6.3  | Selection of a Subminimal GCB: Practical Methods | 89   |
| 2.7    | Algebraic Force Methods of Analysis | 91   |
| 2.7.1  | Algebraic Methods | 91   |

| References | | 98   |
# Contents

## 3 Optimal Displacement Method of Structural Analysis
- 3.1 Introduction ........................................ 101
- 3.2 Formulation ......................................... 101
  - 3.2.1 Coordinate Systems Transformation ............... 102
  - 3.2.2 Element Stiffness Matrix Using Unit Displacement Method ...................................... 105
  - 3.2.3 Element Stiffness Matrix Using Castigliano’s Theorem ......................................... 109
  - 3.2.4 The Stiffness Matrix of a Structure; an Algorithmic Approach................................ 116
- 3.3 Transformation of Stiffness Matrices .................. 118
  - 3.3.1 Stiffness Matrix of a Bar Element ................. 118
  - 3.3.2 Stiffness Matrix of a Beam Element ............... 120
- 3.4 Displacement Method of Analysis ..................... 122
  - 3.4.1 Boundary Conditions ............................ 124
  - 3.4.2 General Loading .................................. 125
- 3.5 Stiffness Matrix of a Finite Element ................. 128
  - 3.5.1 Stiffness Matrix of a Triangular Element ........ 129
- 3.6 Computational Aspects of the Matrix Displacement Method ........................................ 132
  References ................................................................ 135

## 4 Ordering for Optimal Patterns of Structural Matrices: Graph Theory Methods
- 4.1 Introduction .......................................... 137
- 4.2 Bandwidth Optimisation ................................ 138
- 4.3 Preliminaries .......................................... 140
- 4.4 A Shortest Route Tree and Its Properties .......... 142
- 4.5 Nodal Ordering for Bandwidth Reduction .......... 142
  - 4.5.1 A Good Starting Node ............................ 143
  - 4.5.2 Primary Nodal Decomposition .................... 145
  - 4.5.3 Transversal P of an SRT ......................... 146
  - 4.5.4 Nodal Ordering .................................... 146
  - 4.5.5 Example ............................................ 147
- 4.6 Finite Element Nodal Ordering for Bandwidth Optimisation ........................................ 147
  - 4.6.1 Element Clique Graph Method (ECGM) ........... 149
  - 4.6.2 Skeleton Graph Method (SkGM) .................... 149
  - 4.6.3 Element Star Graph Method (ESStGGM) .......... 150
  - 4.6.4 Element Wheel Graph Method (EWGM) ............ 151
  - 4.6.5 Partially Triangulated Graph Method (PTGM) ..... 152
  - 4.6.6 Triangulated Graph Method (TGM) ................ 153
  - 4.6.7 Natural Associate Graph Method (NAGM) ........ 153
  - 4.6.8 Incidence Graph Method (IGM) ................... 155
  - 4.6.9 Representative Graph Method (RGM) ............. 156
  - 4.6.10 Computational Results ........................... 157
  - 4.6.11 Discussions ....................................... 158
4.7 Finite Element Nodal Ordering for Profile Optimisation
4.7.1 Introduction
4.7.2 Graph Nodal Numbering for Profile Reduction
4.7.3 Nodal Ordering with Element Clique Graph (NOECG)
4.7.4 Nodal Ordering with Skeleton Graph (NOSG)
4.7.5 Nodal Ordering with Element Star Graph (NOESG)
4.7.6 Nodal Ordering with Element Wheel Graph (NOEWG)
4.7.7 Nodal Ordering with Partially Triangulated Graph (NOPTG)
4.7.8 Nodal Ordering with Triangulated Graph (NOTG)
4.7.9 Nodal Ordering with Natural Associate Graph (NONAG)
4.7.10 Nodal Ordering with Incidence Graph (NOIG)
4.7.11 Nodal Ordering with Representative Graph (NORG)
4.7.12 Nodal Ordering with Element Clique Representative Graph (NOECRG)
4.7.13 Computational Results
4.7.14 Discussions
4.8 Element Ordering for Frontwidth Reduction
4.9 Element Ordering for Bandwidth Optimisation of Flexibility Matrices
4.9.1 An Associate Graph
4.9.2 Distance Number of an Element
4.9.3 Element Ordering Algorithms
4.10 Bandwidth Reduction for Rectangular Matrices
4.10.1 Definitions
4.10.2 Algorithms
4.10.3 Examples
4.10.4 Bandwidth Reduction of Finite Element Models
4.11 Graph-Theoretical Interpretation of Gaussian Elimination

5 Ordering for Optimal Patterns of Structural Matrices: Algebraic Graph Theory and Meta-heuristic Based Methods
5.1 Introduction
5.2 Adjacency Matrix of a Graph for Nodal Ordering
5.2.1 Basic Concepts and Definitions
5.2.2 A Good Starting Node
5.2.3 Primary Nodal Decomposition
5.2.4 Transversal P of an SRT
5.2.5 Nodal Ordering
5.2.6 Example
5.3 Laplacian Matrix of a Graph for Nodal Ordering ..................... 192
  5.3.1 Basic Concepts and Definitions .................................. 192
  5.3.2 Nodal Numbering Algorithm ...................................... 196
  5.3.3 Example ..................................................................... 196
5.4 A Hybrid Method for Ordering ............................................. 196
  5.4.1 Development of the Method ......................................... 197
  5.4.2 Numerical Results .................................................... 198
  5.4.3 Discussions ............................................................ 199
5.5 Ordering via Charged System Search Algorithm ...................... 203
  5.5.1 Charged System Search ............................................... 203
  5.5.2 The CSS Algorithm for Nodal Ordering ......................... 208
  5.5.3 Numerical Examples .................................................. 211
References ........................................................................... 213

6 Optimal Force Method for FEMs: Low Order Elements ............ 215
  6.1 Introduction ..................................................................... 215
  6.2 Force Method for Finite Element Models: Rectangular and
       Triangular Plane Stress and Plane Strain Elements .............. 215
      6.2.1 Member Flexibility Matrices ..................................... 216
      6.2.2 Graphs Associated with FEMs .................................... 220
      6.2.3 Pattern Corresponding to the Self Stress Systems ......... 221
      6.2.4 Selection of Optimal γ-Cycles Corresponding
           to Type II Self Stress Systems .................................... 224
      6.2.5 Selection of Optimal Lists ........................................ 225
      6.2.6 Numerical Examples ............................................... 227
  6.3 Finite Element Analysis Force Method: Triangular and Rectangular
       Plate Bending Elements .................................................. 230
      6.3.1 Graphs Associated with Finite Element Models ............ 233
      6.3.2 Subgraphs Corresponding to Self-Equilibrating Systems .. 233
      6.3.3 Numerical Examples ............................................... 240
  6.4 Force Method for Three Dimensional Finite Element Analysis ... 244
      6.4.1 Graphs Associated with Finite Element Model ............. 244
      6.4.2 The Pattern Corresponding to the Self Stress Systems ... 245
      6.4.3 Relationship Between γ(S) and b1(A(S)) ....................... 248
      6.4.4 Selection of Optimal γ-Cycles Corresponding
           to Type II Self Stress Systems .................................... 251
      6.4.5 Selection of Optimal Lists ........................................ 252
      6.4.6 Numerical Examples ............................................... 254
  6.5 Efficient Finite Element Analysis Using Graph-Theoretical Force
       Method: Brick Element .................................................. 257
      6.5.1 Definition of the Independent Element Forces ............... 258
      6.5.2 Flexibility Matrix of an Element ................................ 259
      6.5.3 Graphs Associated with Finite Element Model ............. 261
      6.5.4 Topological Interpretation of Static Indeterminacy .......... 263
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.5</td>
<td>Models Including Internal Node</td>
<td>270</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Selection of an Optimal List Corresponding to Minimal Self-Equilibrating Stress Systems</td>
<td>271</td>
</tr>
<tr>
<td>6.5.7</td>
<td>Numerical Examples</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>279</td>
</tr>
<tr>
<td>7</td>
<td>Optimal Force Method for FEMS: Higher Order Elements</td>
<td>281</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>7.2</td>
<td>Finite Element Analysis of Models Comprised of Higher Order Triangular Elements</td>
<td>281</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Definition of the Element Force System</td>
<td>282</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Flexibility Matrix of the Element</td>
<td>282</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Graphs Associated with Finite Element Model</td>
<td>282</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Topological Interpretation of Static Indeterminacies</td>
<td>284</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Models Including Opening</td>
<td>287</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Selection of an Optimal List Corresponding to Minimal Self-Equilibrating Stress Systems</td>
<td>290</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Numerical Examples</td>
<td>291</td>
</tr>
<tr>
<td>7.3</td>
<td>Finite Element Analysis of Models Comprised of Higher Order Rectangular Elements</td>
<td>297</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Definition of Element Force System</td>
<td>298</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Flexibility Matrix of the Element</td>
<td>300</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Graphs Associated with Finite Element Model</td>
<td>301</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Topological Interpretation of Static Indeterminacies</td>
<td>303</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Selection of Generators for SESs of Type II and Type III</td>
<td>307</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Algorithm</td>
<td>308</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Numerical Examples</td>
<td>309</td>
</tr>
<tr>
<td>7.4</td>
<td>Efficient Finite Element Analysis Using Graph-Theoretical Force Method: Hexa-Hedron Elements</td>
<td>316</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Independent Element Forces and Flexibility Matrix of Hexahedron Elements</td>
<td>317</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Graphs Associated with Finite Element Models</td>
<td>321</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Negative Incidence Number</td>
<td>325</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Pattern Corresponding to Self-Equilibrating Systems</td>
<td>325</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Selection of Generators for SESs of Type II and Type III</td>
<td>331</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Numerical Examples</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>338</td>
</tr>
<tr>
<td>8</td>
<td>Decomposition for Parallel Computing: Graph Theory Methods</td>
<td>341</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>341</td>
</tr>
<tr>
<td>8.2</td>
<td>Earlier Works on Partitioning</td>
<td>342</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Nested Dissection</td>
<td>342</td>
</tr>
<tr>
<td>8.2.2</td>
<td>A Modified Level-Tree Separator Algorithm</td>
<td>342</td>
</tr>
<tr>
<td>8.3</td>
<td>Substructuring for Parallel Analysis of Skeletal Structures</td>
<td>343</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Introduction</td>
<td>343</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Substructuring Displacement Method</td>
<td>344</td>
</tr>
</tbody>
</table>
8.3.3 Methods of Substructuring ........................................ 346
8.3.4 Main Algorithm for Substructuring .............................. 348
8.3.5 Examples .......................................................... 348
8.3.6 Simplified Algorithm for Substructuring ....................... 350
8.3.7 Greedy Type Algorithm ........................................... 352
8.4 Domain Decomposition for Finite Element Analysis .......... 352
8.4.1 Introduction .......................................................... 353
8.4.2 A Graph Based Method for Subdomaining ................. 354
8.4.3 Renumbering of Decomposed Finite Element Models .......... 356
8.4.4 Computational Results of the Graph Based Method .......... 356
8.4.5 Discussions on the Graph Based Method ....................... 359
8.4.6 Engineering Based Method for Subdomaining ............... 360
8.4.7 Genre Structure Algorithm ...................................... 361
8.4.8 Example ........................................................... 364
8.4.9 Computational Results of the Engineering Based Method .... 367
8.4.10 Discussions ........................................................ 367
8.5 Substructuring: Force Method ..................................... 370
8.5.1 Algorithm for the Force Method Substructuring .......... 370
8.5.2 Examples .......................................................... 373
References ............................................................... 376

9 Analysis of Regular Structures Using Graph Products .......... 377
9.1 Introduction ........................................................... 377
9.2 Definitions of Different Graph Products ......................... 377
9.2.1 Boolean Operation on Graphs ................................... 377
9.2.2 Cartesian Product of Two Graphs .............................. 378
9.2.3 Strong Cartesian Product of Two Graphs ................... 380
9.2.4 Direct Product of Two Graphs .................................. 381
9.3 Analysis of Near-Regular Structures Using Force Method .... 383
9.3.1 Formulation of the Flexibility Matrix .......................... 385
9.3.2 A Simple Method for the Formation of the Matrix $A_T$ ........ 388
9.4 Analysis of Regular Structures with Excessive Members .... 389
9.4.1 Summary of the Algorithm ..................................... 390
9.4.2 Investigation of a Simple Example ........................... 390
9.5 Analysis of Regular Structures with Some Missing Members ... 393
9.5.1 Investigation of an Illustrative Simple Example ............ 393
9.6 Practical Examples ................................................... 396
References ............................................................... 406
10 Simultaneous Analysis, Design and Optimization of Structures
Using Force Method and Supervised Charged System Search . . . . 407
10.1 Introduction ............................................. 407
10.2 Supervised Charged System Search Algorithm ............. 408
10.3 Analysis by Force Method and Charged System Search . . . . 409
10.4 Procedure of Structural Design Using Force Method
and the CSS ............................................. 414
10.4.1 Pre-selected Stress Ratio ......................... 415
10.5 Minimum Weight ...................................... 420
References ............................................. 432