Contents

1 Theory and Praxis of Measuring Signal Generators: Present and Future .. 1

References ... 9

2 Synthesis of Mathematical Models for Measuring Signals 11

2.1 Introduction ... 11

2.2 Synthesis of Signals Reproducible in Measuring Generators 17

2.3 The Summation Method of Causal Signals 24

2.4 Sequential Parametric Optimization Method in Synthesis of Measuring Signals 28

2.5 Synthesis of Mathematical Models for Periodic Signals 42

2.5.1 Synthesis of Models for Measuring Signals with a Specified Spectrum .. 42

2.5.2 Synthesis of Models for Measuring Signals with a Specified Crest Factor 52

2.5.3 Analysis and Synthesis of Models for a Measuring Signal with Specified Total Harmonic Distortion 57

2.6 Synthesis of Models for Random Measuring Signals 65

2.6.1 Synthesis of Signal Models with a Given Probability Density Function .. 68

2.6.2 Synthesis of Signal Models with a Defined Correlation Function ... 71

2.6.3 Synthesis of Signal Models with a Specified Spectral Density ... 72

2.6.4 Synthesis of Random Signals with Functionally Dependent Controlled Parameters 78

2.6.5 Synthesis of Models for Signals with a Specified Probability Density Function at Functional Relationship of Parameters ... 79

2.7 Synthesis of Sampled and Digital Measuring Signals 82

2.7.1 Synthesis of Sequences of Pseudorandom Numbers with Improved Spectral Characteristics 83

2.7.2 Synthesis of One-Dimensional Maps with Specified Probabilistic Characteristics 94
3 Selected Issues of the Theory of Sine Wave Generators 101
 3.1 Introduction ... 101
 3.2 Processes in the Oscillatory System of a Driving Oscillator.
 Excitation and Existence Conditions of Oscillations 102
 3.2.1 Criteria for the Onset of Oscillations 107
 3.3 Energy Analysis of Oscillating Processes 108
 3.4 Analysis by the Complex Amplitude Method 109
 3.5 Analysis by the Differential Equation Method 117
 3.6 Analysis of the Characteristic Equation of Oscillatory
 System by the Pole-Zero Method 122
 3.7 Analysis by the Four-Pole Method 127
 3.8 Analysis by the Phase-Plane Method 133
 3.9 Analysis of Processes in an Oscillating System
 by the Graphical Method (Hodograph Analysis) 138
 3.10 Conclusions ... 142
 References .. 142

4 Synthesis of Models for Self-Oscillating Systems of Generators 143
 4.1 Introduction ... 143
 4.2 Basic Contradictions in Self-Oscillating Systems
 of Generators .. 144
 4.3 Analysis of Self-Oscillating Systems with Other Types
 of Non-linearity ... 151
 4.4 Synthesis of Self-Oscillating Systems with Optimal
 Non-linear Function .. 154
 4.5 Self-Oscillating Systems with Two Non-linear Functions 161
 4.5.1 Self-Oscillating Systems with Hysteresis Functions 165
 4.6 Synthesis of Dynamical Systems by the Steady-State
 Self-Oscillation Method ... 172
 4.6.1 Synthesis of Self-Oscillating Systems
 with a Specified Shape of Self-Oscillation 172
 4.6.2 Synthesis of Self-Oscillating Systems Generating
 Oscillations of Complex Shape
 with Specified Parameters 173
 4.6.3 Synthesis of Parametric Self-Oscillating Systems 178
 4.7 Synthesis of High-Order Dynamical Systems 182
 4.8 Synthesis of Self-Oscillating Systems with Stochastic
 Oscillations .. 185
 4.9 Conclusions ... 189
 References .. 190
5 Synthesis of Block Diagrams of Measuring Signal Generators

5.1 Introduction

5.2 Basic Provisions of the Symmetry Principle
 and its Application in the Synthesis

5.2.1 Methods of Synthesizing Measuring Converters
 Based on the Symmetry Principle

5.2.2 Feedback Method

5.2.3 Structural Methods

5.2.4 Synthesis of Structures of Dynamical Systems
 by the Direct Method

5.3 Synthesis of Oscillating Systems

5.3.1 Synthesis of Oscillating Systems Based on a Linear
 RC Circuit and an Active Element

5.3.2 Synthesis of Oscillating Systems Based on an Active
 Element with Unidirectional Signal Transmission

5.3.3 Synthesis of Oscillating Systems with Active
 Element with Bidirectional Signal Transmission

5.3.4 Synthesis of Transfer Functions of Frequency-
 Dependent RC Circuits

5.3.5 Identification of Requirements for Transfer-
 Function Coefficients

5.3.6 Synthesis of a Linear Frequency-Dependent
 Electrical Circuit

5.4 Synthesis of Oscillating Systems Generating Periodic
 Non-Sine Wave Oscillations

5.4.1 Synthesis of Oscillating Systems Based
 on the Symmetry and Reflection Principles

5.4.2 Synthesis of Oscillating Systems Based on Nonlinear
 Active Elements with Bidirectional
 of Signal Transmission

5.5 Conclusions

References

6 Optimization of Oscillating Systems

6.1 Introduction

6.2 Optimization of Oscillating Systems by Harmonic
 Distortion Level

6.2.1 Optimization of Oscillating Systems Based
 on Passive RC Circuits and Active Elements

6.2.2 Optimization of Oscillating Systems Based
 on Active RC Circuits

6.3 Minimization of Frequency Error of an Oscillating System

6.4 Synthesis and Optimization of Oscillating Systems
 with Oscillation Frequency Tuning
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>6.5.1</td>
<td>Optimization of Transient Processes with Relay Functions</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>6.5.2</td>
<td>Optimization of Transient Time in Oscillating Systems with Impulse Excitation</td>
<td>331</td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td>Analysis of Generator Block Diagrams</td>
<td>338</td>
</tr>
<tr>
<td>6.7</td>
<td></td>
<td>Conclusions</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Analog Signal Generators</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Introduction</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>Resistance-Capacitance Circuits</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>7.2.1</td>
<td>Wien RC Circuit</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>7.2.2</td>
<td>Differentiating-Integrating RC Circuit</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>7.2.3</td>
<td>Double T-circuit RC Bridge</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>7.2.4</td>
<td>Covered Rejector 3R3C Circuit</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>7.2.5</td>
<td>Covered Rejector 3C3R Circuit</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>7.2.6</td>
<td>Three-Order Integrating and Differentiating RC Circuits</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>Active Amplifying Elements of Oscillating Systems</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>7.3.1</td>
<td>Application of Operational Amplifiers in Oscillating Systems</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>7.3.2</td>
<td>Operational Amplifiers with Voltage Input</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>7.3.3</td>
<td>Models, Parameters and Characteristics of Operational Amplifiers</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>7.3.4</td>
<td>Effects of OpAmp Input and Output Resistances on the Fulfillment of the Oscillation Excitation Conditions</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>7.3.5</td>
<td>Operational Amplifiers with Current Input</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>7.3.6</td>
<td>Operational Amplifiers with Current Output</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>7.3.7</td>
<td>Current-Differencing Amplifiers</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>7.3.8</td>
<td>Rail-to-Rail Amplifiers</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>7.3.9</td>
<td>Instrumental Amplifiers</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>7.3.10</td>
<td>Clamping Amplifiers</td>
<td>397</td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td>Elements and Systems of Self-Oscillation Amplitude Stabilization</td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>7.4.1</td>
<td>Nonlinear Elements for Stabilization of Self-Oscillation Amplitude</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>7.4.2</td>
<td>Systems for Automatic Stabilization of the Self-Oscillation Amplitude</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>7.4.3</td>
<td>Full-Wave Operational Rectifiers</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>7.4.4</td>
<td>Control Elements of the Automatic Stabilization Systems</td>
<td>413</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td>Conclusions</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>419</td>
<td></td>
</tr>
</tbody>
</table>
8 Digital Signal Generators

8.1 Introduction ... 421
8.2 Direct Digital Synthesis of Signals 421
8.3 Implementation of the Direct Digital Synthesis 429
8.3.1 Short Description of the DDS-Based Integral Microcircuit AD9852 ... 433
8.3.2 Low-Pass Filter ... 434
8.4 Power Amplifier and Output Attenuator 435
8.4.1 Output Attenuator .. 438
8.5 Conclusions .. 444
References ... 444

9 Practical Designing of Measuring Signal Generators

9.1 Conclusions .. 456
References ... 460

Appendix 1 ... 461
Appendix 2 ... 467
Appendix 3 ... 479
Glossary ... 481
Measuring Signal Generators
Theory & Design
Rybin, Y.K.
2014, XIX, 488 p. 332 illus., 30 illus. in color., Hardcover
ISBN: 978-3-319-02832-3