
Preface

Many physical phenomena are described by equations involving nondifferentiable
functions, e.g., generic trajectories of quantum mechanics (Feynman and Hibbs
1965). Several different approaches to deal with nondifferentiable functions are
proposed in the literature of variational calculus. We can mention the time scale
approach, which typically deal with delta or nabla differentiable functions
(Ferreira and Torres 2008; Malinowska and Torres 2009; Martins and Torres
2009); the fractional approach, allowing to consider functions that have no first
order derivative but have fractional derivatives of all orders less than one (Almeida
et al. 2010; Frederico and Torres 2008; Malinowska and Torres 2012); and the
quantum approach, which is the subject of this book and is particularly useful to
model physical and economical systems (Bangerezako 2004; Cresson et al. 2009;
Malinowska and Torres 2010).

Quantum difference operators are receiving an increase of interest, mainly due
to their applications—see, e.g., (Almeida and Torres 2009a; Annaby et al. 2012;
Bangerezako 2004; Bangerezako 2005; Cresson et al. 2009; Ernst 2008; Kac and
Cheung 2002). In 1992, Nottale introduced the theory of scale-relativity without
the hypothesis of space–time differentiability (Nottale 1992; Nottale 1999). A
rigorous mathematical foundation to Nottale’s scale-relativity theory is nowadays
given by means of a quantum calculus (Almeida and Torres 2009a; Almeida and
Torres 2010; Cresson et al. 2009; Kac and Cheung 2002). Roughly speaking, we
substitute the classical derivative by a difference operator, which allows us to deal
with sets of nondifferentiable curves. For a deeper discussion of the motivation to
study a nondifferentiable quantum calculus and its leading role in the under-
standing of complex physical systems, we refer the reader to (Almeida and Torres
2009a; Cresson et al. 2009; Kac and Cheung 2002; Nottale 1992).

Quantum calculus has several different dialects (Brito da Cruz et al. 2012; Brito
da Cruz et al. 2013b, c; Ernst 2008; Kac and Cheung 2002). The most common one
is based on Jackson’s q-operators, where q stands for quantum (Annaby and
Mansour 2012; Jackson 1908; Jackson 1910; Kac and Cheung 2002). The Jackson
q-difference operator is defined by

Dqf tð Þ ¼ f qtð Þ � f tð Þ
t q� 1ð Þ ; t 6¼ 0;

vii



where q is a fixed number, normally taken from (0, 1). Here f is supposed to be
defined on a q-geometric set A, i.e., A is a subset of R (or C) for which qt [
A whenever t [ A. The derivative at zero is defined to be f0(0), provided that f0(0)
exists (Abu Risha et al. 2007; Andrews et al. 1999; Carmichael 1911; Carmichael
1913; Ismail 2005; Jackson 1908). Jackson also introduced the q-integral

Z a

0
f ðtÞdqt ¼ a 1� qð Þ

X1
k¼0

qk f ðaqkÞ;

provided that the series converges, and in this case he defined

Z b

a
f ðtÞdqt ¼

Z b

0
f ðtÞdqt �

Z a

0
f ðtÞdqt

(Al-Salam 1966; Jackson 1908; Jackson 1910; Kac and Cheung 2002). In 1949,
Hahn introduced the quantum difference operator

Dq;x f½ � tð Þ ¼ f qt þ xð Þ � f tð Þ
q� 1ð Þt þ x

; t 6¼ x0;

where x0 :¼ x
1�q, f is a real function defined on an interval I containing x0, and q [

(0, 1) and x C 0 are real fixed numbers (Hahn 1949). The Hahn operator unifies (in
the limit) the two most well known and used quantum difference operators: the
Jackson q-difference derivative Dq, where q [ (0, 1) (Gasper and Rahman 2004;
Jackson 1951; Kac and Cheung 2002); and the forward difference Dx, where x[0
(Bird 1936; Jagerman 2000; Jordan 1965). The Hahn difference operator is a
successful tool for constructing families of orthogonal polynomials and investi-
gating some approximation problems—see, e.g., (Alvarez-Nodarse 2006; Costas-
Santos and Marcellán 2007; Dobrogowska and Odzijewicz 2006; Kwon et al.
1998; Petronilho 2007). However, during 60 years, the construction of the proper
inverse of Hahn’s difference operator Dq,x remained an open question. Eventually,
the problem was solved in 2009 by Aldwoah, who developed the associated
integral calculus (Aldwoah 2009)—see also (Aldwoah and Hamza 2011; Annaby
et al. 2012). A different approach would be to reduce the Hahn analysis to the
Jackson q-analysis (Odzijewicz et al. 2001, Appendix A).

In this book, we develop the variational Hahn calculus. More precisely, we
investigate problems of the calculus of variations using Hahn’s difference operator
and the Jackson–Nörlund integral. The calculus of variations is a classical area of
mathematics with many applications in geometry, physics, economics, biology,
engineering, dynamical systems, and control theory (Leizarowitz 1985; Leizarowitz
1989; Weinstock 1974). Although being an old theory, it is very much alive and still
evolving—see, e.g., (Almeida et al. 2010; Almeida and Torres 2009b; Leizarowitz
and Zaslavski 2003; Malinowska and Torres 2012; Martins and Torres 2009). The
basic problem of calculus of variations can be formulated as follows: among all
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differentiable functions y : [a, b] ? R such that y(a) = a and y(b) = b, where a, b are
fixed real numbers, find the one that minimize (or maximize) the functional

L½y� ¼
Z b

a
L t; yðtÞ; y0ðtÞð Þdt:

It can be proved that the candidates to be minimizers (resp. maximizers) to this
problem must satisfy the ordinary differential equation

d

dt
@3L t; yðtÞ; y0ðtÞð Þ ¼ @2L t; yðtÞ; y0ðtÞð Þ;

called the Euler–Lagrange equation (by @iL we denote the partial derivative of L
with respect to its ith argument). If the boundary condition y(a) = a is not present
in the problem, then to find the candidates for extremizers one has to add another
necessary condition: @3L(a, y(a), y0(a)) = 0; if y(b) = b is not present, then @3L(b,
y(b), y0(b)) = 0. These two conditions are known as natural boundary conditions or
transversality conditions. Since many important physical phenomena are described
by nondifferentiable functions, to develop a calculus of variations based on the
Hahn quantum operator is an important issue. This is precisely what we do in this
book. We discuss the fundamental concepts of a variational calculus, such as the
Euler–Lagrange equations for the basic and isoperimetric problems, as well as
Lagrange and optimal control problems. As particular cases, we obtain the clas-
sical discrete-time calculus of variations (Kelley and Peterson 2001, Chap. 8), the
variational q-calculus (Bangerezako 2004; Bangerezako 2005), and the calculus of
variations applied to Nörlund’s sum (Fort 1937; Fort 1948). Variational func-
tionals that depend on higher-order quantum derivatives are considered as well.
Such problems arise in a natural way in applications of engineering, physics, and
economics. As an example, we can consider the equilibrium of an elastic bending
beam. Let us denote by y(x) the deflection of the point x of the beam, E(x) the
elastic stiffness of the material, that can vary with x, and n(x) the load that bends
the beam. One may assume that, due to some constraints of physical nature, the
dynamics does not depend on the usual derivative y0(x) but on some quantum
derivative Dq,x [y] (x). In this condition, the equilibrium of the beam correspond to
the solution of the following higher-order Hahn’s quantum variational problem:

Z L

0

1
2

E xð ÞD2
q;x y½ � xð Þ

� �2
� nðxÞy q2xþ qxþ x

� �� �
dx! min:

Note that we recover the classical problem of the equilibrium of the elastic
bending beam when (x, q) ? (0, 1). This problem is a particular case of problem
(P) investigated in Sect. 2.7. Our higher-order Hahn’s quantum Euler–Lagrange
equation (Theorem 2.45) gives the main tool to solve such problems. As particular
cases, we obtain the q-calculus Euler–Lagrange equation (Bangerezako 2004) and
the h-calculus Euler–Lagrange equation (Bastos et al. 2011; Kelley and Peterson
2001).
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Another generalization of the q-calculus considered in this book includes the
quantum calculus that results from the n-power difference operator

Dnf ðtÞ ¼
f ðtnÞ�f ðtÞ

tn�t if t 2 Rn �1; 0; 1f g;
f 0ðtÞ if t 2 f�1; 0; 1g;

�

where n is a fixed odd positive integer (Aldwoah 2009). For that we develop a
calculus based on the new and more general proposed operator Dn,q (see Definition
3.2). The class of quantum systems thus obtained has two parameters and is wider
than the standard class of quantum dynamical systems studied in the literature. We
claim that the n,q-calculus offers a better mathematical modeling technique to deal
with quantum physical systems of time-varying graininess. We trust that our n,q-
quantum calculus will become a useful tool to investigate nonconservative
dynamical systems in physics (Bartosiewicz and Torres 2008; El-Nabulsi and
Torres 2007; El-Nabulsi and Torres 2008; Frederico and Torres 2007).

The subject of this short book is recent and is still evolving. The Hahn quantum
variational calculus was started only in 2010 with the work (Malinowska and
Torres 2010). Quantum variational problems involving Hahn’s derivatives of
higher-order were first investigated in (Brito da Cruz et al. 2012). Several quantum
variational problems have been recently posed and studied (Aldwoah et al. 2012;
Almeida and Torres 2009; Almeida and Torres 2011; Bangerezako 2004;
Bangerezako 2005; Brito da Cruz et al. 2013a; Cresson 2005; Cresson et al. 2009;
Frederico and Torres 2013; Martins and Torres 2012). The main purpose of this
book is to present optimality conditions for generalized quantum variational
problems in an unified and a coherent way, and call attention to a promising
research area with possible applications in optimal control, physics, and economics
(Cruz et al. 2010; Malinowska and Martins 2013; Sengupta 1997). The results
presented in the book allow to deal with economical problems with a dynamic
nature that does not depend on the usual derivative or the forward difference
operator, but on the Hahn quantum difference operator Dq,x. This is connected
with a moot question: what kind of ‘‘time’’ (continuous or discrete) should be used
in the construction of dynamic models in economics? Although individual eco-
nomic decisions are generally made at discrete time intervals, it is difficult to
believe that they are perfectly synchronized as postulated by discrete models. The
usual assumption that the economic activity takes place continuously is a conve-
nient abstraction in many applications. In others, such as the ones studied in
financial market equilibrium, the assumption of continuous trading corresponds
closely to reality. We believe that our Hahn’s approach helps to bridge the gap
between two families of models: continuous and discrete.

This short book gives a gentle but solid introduction to the Quantum Varia-
tional Calculus. The audience is primarily advanced undergraduate and graduate
students of mathematics, physics, engineering, and economics. However, the book
provides also an opportunity for an introduction to the quantum variational cal-
culus even for experienced researchers. Our aim is to introduce the theory of the
quantum calculus of variations in a way suitable for self-study, and at the same
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time to give the reader the state of the art of a very active and promising research
area. We will be extremely happy if the present book will motivate and encourage
some readers to follow a research activity in the area, and to take part in the
exploration of this exciting subject.

Keywords: Hahn’s difference operator; Jackson–Norlünd’s integral; Quantum
calculus; q-differences; Calculus of variations and optimal control; Quantum
variational problems; Necessary optimality conditions; Euler–Lagrange equations;
Generalized natural boundary conditions; Isoperimetric problems; Leitmann’s
principle; Ramsey model; n,q-power difference operator; Generalized Nörlund
sum; Generalized Jackson integral; n,q-difference equations.

Bialystok and Aveiro, July 2013 Agnieszka B. Malinowska
Delfim F. M. Torres
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