Contents

Part I Abstract Model of a Distributed Control and Embedded Systems

1 Introduction to Distributed Control and Embedded Systems (DCES) 3
  1.1 Motivations .............................................. 5
  1.1.1 Communication Resources Limitations ............... 5
  1.1.2 Computational Resources Limitations ............... 6
  1.2 Goals and Contributions ............................... 7
  1.3 Methodology ........................................... 7

2 Resource Allocation in Distributed Control and Embedded Systems 9
  2.1 Real-Time Scheduling Theory ............................ 9
    2.1.1 Real-Time Single-Processor Scheduling .......... 10
    2.1.2 Real-Time Medium Access Control in Communication Networks ............. 13
    2.1.3 Real-Time Scheduling of Distributed Systems .... 17
  2.2 Integrated Approaches for Control and Resource Allocation .......... 17
    2.2.1 Adaptive Sampling of Control Systems .......... 18
    2.2.2 Allocation of Communication Resources: The “Per Symbol” Paradigm .... 19
    2.2.3 Allocation of Communication Resources: The “Per Message” Paradigm ... 21
    2.2.4 Allocation of Computational Resources .......... 26
  2.3 Notes and Comments .................................... 28

3 Modeling and Analysis of Resource-Constrained Systems ....... 31
  3.1 Mixed-Logical Dynamical (MLD) Systems ................ 31
  3.2 MLD Modeling of Resource-Constrained Systems .......... 33
  3.3 Notion of Communication Sequence ....................... 38
  3.4 State Representation of Resource-Constrained Systems .... 39
  3.5 Stabilization with Limited Resources .................... 39
  3.6 Trajectory Tracking with Limited Resources ............. 40
3.7 Reachability and Observability with Limited Resources ........ 42
3.8 Notes and Comments ........................................ 43

Part II Optimal Co-design of Distributed Control and Embedded Systems

4 Optimal Integrated Control and Scheduling of Resource-Constrained Systems ........................................ 47
4.1 Performance Index Definition ................................ 48
4.2 Optimal Control over a Finite Horizon for a Fixed Communication Sequence ........................................ 49
4.3 Optimal Control over an Infinite Horizon for a Fixed Communication Sequence .................................... 51
4.4 Finite-Time Optimal Integrated Control and Scheduling .... 53
4.4.1 Problem Formulation ....................................... 54
4.4.2 The Branch and Bound Method ............................ 59
4.4.3 An Illustrative Numerical Example ....................... 63
4.5 Notes and Comments .......................................... 66

5 Optimal Integrated Control and Off-line Scheduling of Resource-Constrained Systems ................................ 67
5.1 Preliminaries .................................................... 67
5.2 On Characterizing $H_2$ Norm of Resource-Constrained Systems ..................................................... 68
5.2.1 Standard Extended Model Definition ..................... 68
5.2.2 Standard $H_2$ Norm of a Continuous/Discrete-Time Linear Time Invariant (LTI) System .................... 70
5.2.3 Computing $H_2$ Norm of a Sampled-Data System ..... 71
5.2.4 Introducing the $H_2$ Norm of Periodically Scheduled Resource-Constrained Systems .................... 73
5.3 Introducing the $H_2$ Optimal Integrated Control and Off-line Scheduling Problem ............................... 74
5.3.1 Solving the Optimal Scheduling Subproblem .......... 74
5.3.2 Solving the Optimal Control Subproblem ............... 76
5.3.3 An Illustrative Numerical Example ....................... 76
5.4 Notes and Comments .......................................... 80

6 Optimal Integrated Control and On-line Scheduling of Resource-Constrained Systems ............................. 81
6.1 Model Predictive Control (MPC) of Resource-Constrained Systems .................................................... 82
6.1.1 Problem Formulation ....................................... 82
6.1.2 Optimality ..................................................... 83
6.1.3 An Illustrative Numerical Example ....................... 84
6.2 Optimal Pointer Placement (OPP) Scheduling .......... 87
6.2.1 Problem Formulation ....................................... 87
6.2.2 An Illustrative Numerical Example ....................... 89
6.2.3 Optimal Pointer Placement over Infinite Horizon ...... 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Real-Time Implementation Aspects of the OPP over Infinite Horizon Algorithm</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Optimal Pointer Placement Scheduling: Application to a Car Suspension System</td>
<td>96</td>
</tr>
<tr>
<td>6.4.1</td>
<td>The Suspension Control System</td>
<td>96</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Active Suspension Control Law</td>
<td>98</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Simulation Setup and Results</td>
<td>99</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Embedded Computing Implementation Aspects of the Distributed Suspension Model</td>
<td>102</td>
</tr>
<tr>
<td>6.5</td>
<td>Optimal Pointer Placement Scheduling: Application to a Quadrotor</td>
<td>102</td>
</tr>
<tr>
<td>6.6</td>
<td>Notes and Comments</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Optimal Relation Between Quantization Precision and Sampling Rates</td>
<td>109</td>
</tr>
<tr>
<td>7.1</td>
<td>Modeling and Computation Issues</td>
<td>110</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Quantization Aspects</td>
<td>111</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Information Pattern</td>
<td>112</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Notion of Quantization Sequence</td>
<td>113</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Performance Index Definition</td>
<td>114</td>
</tr>
<tr>
<td>7.2</td>
<td>Static Strategy</td>
<td>114</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Algorithm Description</td>
<td>114</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Practical Stabilization Using the Static Strategy</td>
<td>115</td>
</tr>
<tr>
<td>7.3</td>
<td>Model Predictive Control MPC</td>
<td>119</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Algorithm Description</td>
<td>119</td>
</tr>
<tr>
<td>7.3.2</td>
<td>A Heuristic Approach for the Choice of Quantization Sequences</td>
<td>121</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Attraction Properties of the MPC</td>
<td>122</td>
</tr>
<tr>
<td>7.4</td>
<td>Simulation Results</td>
<td>126</td>
</tr>
<tr>
<td>7.5</td>
<td>Notes and Comments</td>
<td>129</td>
</tr>
<tr>
<td>8</td>
<td>Optimal State-Feedback Resource Allocation</td>
<td>135</td>
</tr>
<tr>
<td>8.1</td>
<td>Optimal Off-line Scheduling</td>
<td>136</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Problem Formulation</td>
<td>136</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Decomposability of the Optimal Integrated Control and Off-line Scheduling Problem</td>
<td>140</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Formal Definition of the $H_2$ Norm</td>
<td>140</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Solving of the Optimal Scheduling Sub-problem</td>
<td>142</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Solving the Optimal Control Sub-problem</td>
<td>144</td>
</tr>
<tr>
<td>8.1.6</td>
<td>An Illustrative Numerical Example</td>
<td>148</td>
</tr>
<tr>
<td>8.2</td>
<td>On-line Scheduling of Control Tasks</td>
<td>151</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Execution of the Feedback Scheduler</td>
<td>153</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Adaptive Scheduling of Control Tasks</td>
<td>153</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Reduction of the Feedback Scheduler Overhead</td>
<td>154</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Stability and Performance Improvements</td>
<td>158</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Reduction of Input Readings Overhead</td>
<td>160</td>
</tr>
<tr>
<td>8.2.6</td>
<td>A Numerical Example</td>
<td>161</td>
</tr>
</tbody>
</table>
8.3 Application to a DC Motor Associated to an Embedded Processor 164
8.4 Notes and Comments ........................................ 167

Part III Insight on Stability and Optimization of Distributed Control and Embedded Systems

9 Insight in Delay System Modeling of DCESs .............................. 173
  9.1 Preliminaries .................................................. 174
  9.2 Hyper-Sampling Period and Induced Mathematical Model .......... 177
  9.3 Macroscopic Time-Delay Model of DCESs ....................... 180
  9.4 Control Input Missings ........................................ 181
  9.5 Some Specific Problems of DCESs and Related Approaches ....... 181
  9.6 Notes and Comments ........................................... 183

10 Stability of DCESs Under the Hyper-Sampling Mode ................. 185
  10.1 Introduction .................................................. 185
  10.2 Problem Formulation .......................................... 186
  10.3 Insights in Computing Stability Regions ....................... 188
    10.3.1 Constant Delay Case .................................... 188
    10.3.2 Time-Varying Delay Case ............................... 190
    10.3.3 Time-Varying Hyper-Sampling Periods ................ 197
  10.4 An Illustrative Application .................................. 200
  10.5 Notes and Comments ......................................... 203

11 Optimization of the Hyper-Sampling Sequence for DCESs .......... 207
  11.1 Introduction .................................................. 207
  11.2 Problem Formulation .......................................... 208
  11.3 Design of the Standard Single-Sampling Period ................ 210
  11.4 Design of the Hyper-Sampling Sequence ....................... 213
  11.5 An Experimental Platform ................................... 217
  11.6 Notes and Comments ......................................... 219

12 A Switched Sampled-Data Control Strategy for DCESs ............... 223
  12.1 Introduction .................................................. 224
  12.2 Intersample Dynamics: A Delay-System Perspective ............ 226
  12.3 A Switched Sampled-Data (SD) Control Approach ............... 227
  12.4 Stability Analysis ........................................... 227
  12.5 Optimization of the Dynamic Performance ..................... 230
  12.6 An Illustrative Application .................................. 233
  12.7 Notes and Comments ......................................... 236

13 A Switched Hold-Zero Compensation Strategy for DCESs Subject to Control Input Missings .......................... 239
  13.1 Modeling and Problem Formulation .................................. 240
    13.1.1 Mathematical Expressions of Control Input Missings .... 240
    13.1.2 A Switched Hold-Zero (HZ) Compensation Strategy .... 242
  13.2 Problem Analysis and Solution ................................ 243
    13.2.1 ACIMR Under the Zero-Control Strategy ................ 244
Optimal Design of Distributed Control and Embedded Systems
Çela, A.; Ben Gaid, M.; Li, X.-G.; Niculescu, S.-I.
2014, XXIV, 288 p. 94 illus., 60 illus. in color., Hardcover
ISBN: 978-3-319-02728-9