Contents

Forward Start Foreign Exchange Options Under Heston’s Volatility and the CIR Interest Rates .. 1
Rehez Ahlip and Marek Rutkowski
1 Introduction .. 1
2 Foreign Exchange Model ... 3
3 Forward Start Foreign Exchange Options 4
4 Bond Pricing and Forward Exchange Rate 4
5 Auxiliary Probability Measures 6
 5.1 Bond Price Numéraire ... 7
 5.2 Savings Account Numéraire 10
6 Preliminary Results ... 12
7 Valuation of Forward Start Foreign Exchange Options 14
 7.1 Options Pricing Formula in the Bond Numéraire 15
 7.2 Options Pricing Formula in the Savings Account Numéraire ... 20
8 Put-Call Parity for Forward Start Foreign Exchange Options . 23
References .. 27

Real Options with Competition and Incomplete Markets 29
Alain Bensoussan and SingRu (Celine) Hoe
1 Investment Game Problems and General Model Assumptions .. 30
2 Follower’s Problem and Solution 31
 2.1 Postinvestment Utility Maximization 32
 2.2 Preinvestment Utility Maximization 34
 2.3 Follower’s Optimal Stopping Rule 37
3 Leader’s Problem and Solution 38
 3.1 Postinvestment Utility Maximization 38
 3.2 Leader’s Optimal Stopping Rule 44
4 Conclusion ... 44
References .. 45
Dynamic Hedging of Counterparty Exposure

Tomasz R. Bielecki and Stéphane Crépey

1 Introduction

1.1 General Set-up

2 Cashflows

2.1 Re-hypothecation Risk and Segregation

2.2 Cure Period

3 Pricing

3.1 CVA

3.2 Collateral Modeling

4 Common Shock Model of Counterparty Credit Risk

4.1 Unilateral Counterparty Credit Risk

4.2 Model of Default Times

4.3 Credit Derivatives Prices and Price Dynamics in the Common Shocks Model

5 Hedging Counterparty Credit Risk in the Common Shocks Model

5.1 Min-Variance Hedging by a Rolling CDS on the Counterparty

5.2 Multi-instruments Hedge

References

A Note on Market Completeness with American Put Options

Luciano Campi

1 Introduction

2 The Model

3 Hedging with American Put Options

4 A Counterexample to Hedging with European Call Options

References

An f-Divergence Approach for Optimal Portfolios in Exponential Lévy Models

S. Cawston and L. Vostrikova

1 Introduction

2 Utility Maximization in Exponential Lévy Models

3 A Decomposition for Lévy Preserving Equivalent Martingale Measures

4 Utility Maximizing Strategies

References

Optimal Investment with Bounded VaR for Power Utility Functions

Bénamar Chouaf and Serguei Pergamenchtchikov

1 Introduction

2 The Model

3 Optimization Problems

3.1 The Unconstrained Problem

3.2 The Constrained Problem

4 Proofs

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Proof of Theorem 3</td>
<td>110</td>
</tr>
<tr>
<td>4.2</td>
<td>Proof of Theorem 4</td>
<td>114</td>
</tr>
<tr>
<td>Appendix</td>
<td>Properties of the Function (35)</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>115</td>
</tr>
</tbody>
</table>

Three Essays on Exponential Hedging with Variable Exit Times

Tahir Choulli, Junfeng Ma, and Marie-Amélie Morlais

1 Introduction ... 117
2 Mathematical Model and Preliminaries 119
3 Complete Parameterization of Exponential Forward Performances 123
4 Horizon-Unbiased Exponential Hedging 136
5 Optimal Portfolio and Investment Timing for Semimartingales ... 140
Appendix 1 Some Auxiliary Lemmas ... 148
Appendix 2 MEH σ-Martingale Density Under Change of Probability 154
References ... 157

Mean Square Error and Limit Theorem for the Modified Leland
Hedging Strategy with a Constant Transaction Costs Coefficient

Sébastien Darses and Emmanuel Lépinette

1 Introduction ... 159
2 Notations and Models .. 161
2.1 Black–Scholes Model and Hedging Strategy 161
2.2 Reminder About Leland’s Strategy 162
2.3 A Possible Modification of Leland’s Strategy 163
2.4 Assumptions and Notational Conventions 164
3 Main Result ... 165
4 Auxiliary Results .. 166
4.1 Geometric Brownian Motion and Related Quantities 166
4.2 Basic Results Concerning the Revision Dates 168
5 Proof of the Limit Theorem .. 170
5.1 Step 1: Splitting of the Hedging Error 171
5.2 Step 2: The Mean Square Residue Tends to 0 with Rate $n^{\frac{1}{2}+2p}$ 171
5.3 Step 3: Asymptotic Distribution ... 184
5.4 Conclusion .. 190
Appendix ... 191
A.1 Explicit Formulae ... 191
A.2 Estimates ... 193
A.3 Technical Lemmas ... 198
References ... 199

Conditional Default Probability and Density

N. El Karoui, M. Jeanblanc, Y. Jiao, and B. Zargari

1 Introduction ... 202
2 Definitions .. 202
3 Examples of Martingale Survival Processes 203
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>The Drift Term and the Real Option Pricing</td>
<td>252</td>
</tr>
<tr>
<td>12.2</td>
<td>Practical Option Hedging</td>
<td>253</td>
</tr>
<tr>
<td>12.3</td>
<td>Difficulties</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Maximally Acceptable Portfolios</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Ernst Eberlein and Dilip B. Madan</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acceptability Indices</td>
<td>259</td>
</tr>
<tr>
<td>2</td>
<td>Constructing Maximally Acceptable Portfolios</td>
<td>263</td>
</tr>
<tr>
<td>3</td>
<td>Nonlinearity and Acceptability in Economies</td>
<td>265</td>
</tr>
<tr>
<td>4</td>
<td>In Sample Application to Portfolios Constructed for the Year 2008</td>
<td>266</td>
</tr>
<tr>
<td>5</td>
<td>Backtesting Portfolio Rebalancing from 1997 to 2008</td>
<td>268</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Some Extensions of Norros’ Lemma in Models with Several Defaults</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Pavel V. Gapeev</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>273</td>
</tr>
<tr>
<td>2</td>
<td>Default Times and Filtration Immersions</td>
<td>274</td>
</tr>
<tr>
<td>2.1</td>
<td>The Setting</td>
<td>274</td>
</tr>
<tr>
<td>2.2</td>
<td>Immersion Properties</td>
<td>275</td>
</tr>
<tr>
<td>3</td>
<td>Extensions of Norros’ Lemma</td>
<td>276</td>
</tr>
<tr>
<td>3.1</td>
<td>The Case of One Default Time</td>
<td>276</td>
</tr>
<tr>
<td>3.2</td>
<td>The Case of Two Default Times</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>On the Pricing of Perpetual American Compound Options</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Pavel V. Gapeev and Neofytos Rodosthenous</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>2</td>
<td>Preliminaries</td>
<td>285</td>
</tr>
<tr>
<td>2.1</td>
<td>Formulation of the Problem</td>
<td>285</td>
</tr>
<tr>
<td>2.2</td>
<td>The Structure of the Optimal Stopping Times</td>
<td>286</td>
</tr>
<tr>
<td>2.3</td>
<td>The Free-Boundary Problem</td>
<td>288</td>
</tr>
<tr>
<td>3</td>
<td>Solutions of the Free-Boundary Problems</td>
<td>288</td>
</tr>
<tr>
<td>3.1</td>
<td>The Call-on-Call Option</td>
<td>289</td>
</tr>
<tr>
<td>3.2</td>
<td>The Call-on-Put Option</td>
<td>289</td>
</tr>
<tr>
<td>3.3</td>
<td>The Put-on-Call Option</td>
<td>290</td>
</tr>
<tr>
<td>3.4</td>
<td>The Put-on-Put Option</td>
<td>291</td>
</tr>
<tr>
<td>4</td>
<td>Main Results and Proofs</td>
<td>292</td>
</tr>
<tr>
<td>5</td>
<td>Chooser Options</td>
<td>297</td>
</tr>
<tr>
<td>5.1</td>
<td>Formulation of the Problem</td>
<td>297</td>
</tr>
<tr>
<td>5.2</td>
<td>Solution of the Free-Boundary Problem</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>303</td>
</tr>
</tbody>
</table>
Sensitivity with Respect to the Yield Curve: Duration in a Stochastic Setting
Paul C. Kettler, Frank Proske, and Mark Rubtsov
1 Introduction ... 363
2 An Expanded Concept of Duration via Malliavin Calculus 367
3 Estimation of Stochastic Duration and the Construction of Immunization Strategies 375
Appendix Macaulay Duration and Portfolio Immunization 381
A.1 Discrete Case 381
A.2 Continuous Case 382
A.3 Portfolio Immunization 382
References .. 383

On the First Passage Time Under Regime-Switching with Jumps
Masaaki Kijima and Chi Chung Siu
1 Introduction ... 387
2 Regime-Switching Jump-Diffusion Process 390
2.1 A Special Case: Two Regimes 394
3 First Passage Time Under Regime-Switching
 Double-Exponential Jump Model 396
3.1 Conditional Independence and Memoryless Properties .. 397
3.2 The First-Passage-Time Problem 399
4 Numerical Examples 403
5 Conclusion ... 408
Appendix .. 408
References .. 409

Strong Consistency of the Bayesian Estimator for the Ornstein–Uhlenbeck Process
Arturo Kohatsu-Higa, Nicolas Vayatis, and Kazuhiro Yasuda
1 Introduction ... 412
2 Framework and General Theorem 413
2.1 Framework ... 413
2.2 General Theorem of Kohatsu-Higa et al. [9] 415
2.3 Parameter Tuning for Assumption (A) (6)-(a) 416
3 The Ornstein–Uhlenbeck Process 420
3.1 The Euler–Maruyama Approximation of the OU Process 421
3.2 About Assumptions (A) (1)–(5) 422
3.3 Assumption (A) (6) 427
Appendix .. 434
References .. 437

Multiasset Derivatives and Joint Distributions of Asset Prices
Ilya Molchanov and Michael Schmutz
1 Introduction ... 439
2 Basket Options and Options on the Maximum of Several Assets . 441
3	Characterisation of the Distribution of the Underlying Asset Prices	444
4	Recovery of Asset Distributions from Option Prices	447
5	Symmetry Properties and Basket Options	448
6	Symmetries of Exchange and Max-Options	451
7	Joint Symmetries	452
8	Combinations, Lift Zonoids and General Univariate European Derivatives	454

References | 457 |

Pricing of Volume-Weighted Average Options: Analytical Approximations and Numerical Results	461
Alexander A. Novikov, Timothy G. Ling, and Nino Kordzakhia

1 | Introduction | 461 |
2 | The VWAP Model and the Moment Matching Approach | 463 |
3 | Computing the VWAP Moments | 464 |
3.1 | The VWAP First Moment | 464 |
3.2 | Computing the Second Moment | 468 |
3.3 | Generalized Inverse Gaussian Distribution | 469 |
4 | Numerical Results | 469 |

Appendix | 472 |
References | 472 |

A Class of Homothetic Forward Investment Performance Processes with Non-zero Volatility	475
Sergey Nadtochiy and Thaleia Zariphopoulou

1 | Introduction | 475 |
2 | The Stochastic Factor Model and Investment Performance Measurement | 477 |
2.1 | Forward Investment Performance Process | 478 |
2.2 | The Forward Performance SPDE | 479 |
2.3 | The Zero Volatility Case | 481 |
3 | Homothetic Forward Investment Performance Processes | 483 |
3.1 | The Zero-Volatility Homothetic Case | 483 |
3.2 | Non-zero Volatility Homothetic Case | 484 |
4 | Non-negative Solutions to an Ill-Posed Heat Equation with a Potential | 485 |
4.1 | The Backward Heat Equation | 494 |
5 | Examples | 496 |
5.1 | Mean Reverting Stochastic Volatility | 496 |
5.2 | Heston-Type Stochastic Volatility | 500 |

References | 504 |

Solution of Optimal Stopping Problem Based on a Modification of Payoff Function	505
Ernst Presman

1 | Discrete Time Case | 505 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Examples for One-Dimensional Diffusion</td>
<td>509</td>
</tr>
<tr>
<td>References</td>
<td>516</td>
</tr>
<tr>
<td>A Stieltjes Approach to Static Hedges</td>
<td>519</td>
</tr>
<tr>
<td>Michael Schmutz and Thomas Zürcher</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>519</td>
</tr>
<tr>
<td>2 Static Hedging with the Lebesgue Measure</td>
<td>520</td>
</tr>
<tr>
<td>3 Static Hedging with Lebesgue–Stieltjes Integrals</td>
<td>523</td>
</tr>
<tr>
<td>References</td>
<td>534</td>
</tr>
<tr>
<td>Optimal Stopping of Seasonal Observations and Projection of a Markov Chain</td>
<td>535</td>
</tr>
<tr>
<td>Isaac M. Sonin</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>535</td>
</tr>
<tr>
<td>2 Optimal Stopping of MC</td>
<td>536</td>
</tr>
<tr>
<td>3 Recursive Calculation of Characteristics of MC and the State Reduction (SR) Approach</td>
<td>538</td>
</tr>
<tr>
<td>4 State Elimination (SE) Algorithm</td>
<td>539</td>
</tr>
<tr>
<td>5 Projection of MC and Seasonal Observations</td>
<td>539</td>
</tr>
<tr>
<td>6 Open Problem</td>
<td>542</td>
</tr>
<tr>
<td>References</td>
<td>543</td>
</tr>
</tbody>
</table>