
Chapter 2
Banach Contraction Principle
and Its Generalizations

Abdul Latif

2.1 Introduction

In 1922, the Polish mathematician Stefan Banach established a remarkable fixed
point theorem known as the “Banach Contraction Principle” (BCP) which is one
of the most important results of analysis and considered as the main source of
metric fixed point theory. It is the most widely applied fixed point result in many
branches of mathematics because it requires the structure of complete metric space
with contractive condition on the map which is easy to test in this setting. The BCP
has been generalized in many different directions. In fact, there is vast amount of
literature dealing with extensions/generalizations of this remarkable theorem. In this
chapter, it is impossible to cover all the known extensions / generalizations of the
BCP. However, an attempt is made to present some extensions of the BCP in which
the conclusion is obtained under mild modified conditions and which play important
role in the development of metric fixed point theory.

2.2 Contractions: Definition and Examples

Throughout this paper, we denote by N the set of all positive integers and by R the
set of all real numbers.

Definition 2.1. Let (X ,d) be a metric space and let f : X → X be a mapping.

(a) A point x ∈ X is called a fixed point of f if x = f (x).
(b) f is called contraction if there exists a fixed constant h < 1 such that
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d( f (x), f (y)) ≤ hd(x,y), for all x,y ∈ X . (2.1)

A contraction mapping is also known as Banach contraction. If we replace the
inequality (2.1) with strict inequality and h = 1, then f is called contractive (or
strict contractive). If (2.1) holds for h = 1, then f is called nonexpansive; and if
(2.1) holds for fixed h < ∞, then f is called Lipschitz continuous . Clearly, for the
mapping f , the following obvious implications hold:

contraction ⇒ contractive ⇒ nonexpansive ⇒ Lipschitz continuous

Example 2.1. (a) Consider the usual metric space (R,d). Define

f (x) =
x
a
+ b, for all x ∈ R.

Then, f is contraction on R if a> 1 and the solution of the equation x− f (x) = 0
is x = ab

a−1 .

(b) Consider the Euclidean metric space (R2,d). Define

f (x,y) =
( x

a
+ b,

y
c
+ b
)
, for all (x,y) ∈ R

2.

Then, f is contraction on R
2 if a,c > 1. Now, solving the equation f (x,y) =

(x,y) for a fixed point, we get x = ab
a−1 and y = cb

c−1 .

Using induction, one can easily get the following concerning iterates of a
contraction mapping.

If f is a contraction mapping on a metric space (X ,d) with contraction constant
h, then f n (where the superscript represents the nth iterate of f ) is also a contraction
on X with constant hn.

Consider then the situation in which f : X → X is not necessarily a contraction
mapping, but f n is a contraction for some n.

Example 2.2. (a) Let f : [0,2]→ [0,2] be defined by

f (x) =

{
0, x ∈ [0,1],
1, x ∈ (1,2].

Then, f 2(x) = 0 for all x ∈ [0,2], and so, f 2 is a contraction on [0,2] . Note that
f is not continuous and thus not a contraction map.

(b) Define f (x) = cosx on R. Then, f is not a contraction on R. Indeed, suppose
there exists h ∈ (0,1) such that

∣∣∣∣
cosx− cosy

x− y

∣∣∣∣≤ h, for all x �= y.
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Letting y → x, we get |sinx| ≤ h for all x, which is false.
Note that the iterated function f 2(x) = cos(cosx) satisfies

∣∣∣∣
d
dx

(cos(cosx))

∣∣∣∣= |sin(cosx)sin(x)|< sin1 < 1,

and thus, by the mean-value theorem, f 2 is a contraction on R.
(c) Define f (x) = exp(−x) on R. Then, f is not a contraction on R. But, f 2(x) =

exp(−exp(−x)) is a contraction on R. Indeed,

∣∣∣∣
d
dx

(exp(−exp(−x)))

∣∣∣∣= |exp(−x− exp(−x))| ≤ e−1 < 1,

and thus, the conclusion follows by the mean-value theorem.

For non-contractions, there are examples where f has a unique fixed point but an
iterate of f does not.

Example 2.3. Define

f (x) = 1− x, for all x ∈ R.

Then, f is not a contraction, has a unique fixed point, but note that

f 2(x) = x, for all x ∈ R

is rich with fixed points.

2.3 The Banach Contraction Principle with Some
Applications

In this section, we will discuss the most basic fixed point theorem in analysis,
known as the Banach Contraction Principle (BCP). It is due to Banach [11]
and appeared in his Ph.D. thesis (1920, published in 1922). The BCP was first
stated and proved by Banach for the contraction maps in the setting of complete
normed linear spaces. At about the same time the concept of an abstract metric
space was introduced by Hausdorff, which then provided the general framework
for the principle for contraction mappings in a complete metric space. The BCP
can be applied to mappings which are differentiable, or more generally, Lipschitz
continuous. A number of articles with applications on the topic can also be found in
[1, 7, 8, 29, 34, 46, 103].

Theorem 2.1 (Banach Contraction Principle). Let (X ,d) be a complete metric
space, then each contraction map f : X → X has a unique fixed point.
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Proof. Let h be a contraction constant of the mapping f . We will explicitly construct
a sequence converging to the fixed point. Let x0 be an arbitrary but fixed element
in X . Define a sequence of iterates {xn} in X by

xn = f (xn−1) (= f n(x0)), for all n ≥ 1. (2.2)

Since f is a contraction, we have

d(xn,xn+1) = d( f (xn−1), f (xn))≤ hd(xn−1,xn), for any n ≥ 1.

Thus, we obtain

d(xn,xn+1)≤ hnd(x0,x1), for all n ≥ 1.

Hence, for any m > n, we have

d(xn,xm)≤
(
hn + hn+1 + · · ·+ hm−1)d(x0,x1)≤ hn

1− h
d(x0,x1).

We deduce that {xn} is Cauchy sequence in a complete space X . Let xn → p ∈ X .
Now using the continuity of the map f , we get

p = lim
n→∞

xn = lim
n→∞

f (xn−1) = f (p).

Finally, to show f has at most one fixed point in X , let p and q be fixed points of f .
Then,

d(p,q) = d( f (p), f (q)) ≤ hd(p,q).

Since h < 1, we must have p = q. �	
The proof of the BCP yields the following useful information about the rate of

convergence towards the fixed point.

Corollary 2.1. Let f be a contraction mapping on a complete metric space (X ,d)
with contraction constant h and fixed point p. For any x0 ∈ X, with f -iterates {xn},
we have the estimates

d(xn, p) ≤ hn

1− h
d(x0, f (x0)), (2.3)

d(xn, p) ≤ hd(xn, p), (2.4)

d(xn, p) ≤ h
1− h

d(xn−1,xn). (2.5)

In fact, the three inequalities in Corollary 2.1 serve different purposes. The
inequality (2.3) tells us, in terms of the distance between x0 and f (x0) = x1, how



2 Banach Contraction Principle and Its Generalizations 37

many times we need to iterate f starting from x0 to be certain that we are within a
specified distance from the fixed point. This is an upper bound on how long we need
to compute. It is called an a priori estimate. Inequality (2.4) shows that once we find
a term by iteration within some desired distance of the fixed point, all further iterates
will be within that distance. However, (2.4) is not so useful as an error estimate since
both sides of (2.4) involve the unknown fixed point. The inequality (2.5) tells us,
after each computation, how much closer we are to the fixed point in terms of the
previous two iterations. This kind of estimate, called an a posteriori estimate, is very
important because if two successive iterations are nearly equal, (2.5) guarantees that
we are very close to the fixed point.

Corollary 2.2. Let f : X →X be a contraction mapping on a complete metric space
and M ⊆ X be a closed subset such that f (M) ⊆ M. Then, the unique fixed point of
f is in M.

It may be the case that f : X → X is not a contraction on the whole space X , but
rather a contraction on some neighborhood of a given point. In this case we have the
following result:

Theorem 2.2. Let (X ,d) be a complete metric space and let Br(y) = {x ∈ X :
d(x,y) < r}, where y ∈ X and r > 0. Let f : Br(y) → X be a contraction map with
contraction constant h < 1. Further, assume that

d(y, f (y)) < r(1− h).

Then, f has a unique fixed point in Br(y).

Proof. Note that the uniform continuity of f allows us to extend f to a mapping
defined on Br(y) which is a contraction map having the same Lipschitz constant as
the original map. We show that f (Br(y))⊆ Br(y). Let x ∈ Br(y), then

d(y, f (x)) ≤ d(y, f (y))+ d( f (y), f (x)) < r(1− h)+ hr = r,

and hence, f : Br(y) → Br(y). Since Br(y) is a complete metric space, using
Theorem 2.1, f has a unique fixed point p ∈ Br(y). Thus, p ∈ Br(y) because
p = f (p) ∈ Br(y). �	
Remark 2.1. If f is a contraction map on a complete metric space (X ,d) with
contraction constant h, then f n is also a contraction on X with constant hn and the
unique fixed point of f is also the unique fixed point of any f n.

We observed in Example 2.2 that in some situations a function is not a contraction
but its iterate is a contraction map. To get the conclusion of the BCP for the
original function, the following early example of an extension of BCP is due
Caccioppoli [18].

Theorem 2.3. Let (X ,d) be a complete metric space and let f : X → X be a
mapping such that for each n ≥ 1, there exists a constant cn such that
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d( f n(x), f n(y))≤ cnd(x,y), for all x,y ∈ X ,

where ∑∞
n=1 cn < ∞. Then, f has a unique fixed point.

While, Bryant [17] extended BCP as follows.

Theorem 2.4. Let (X ,d) be a complete metric space and let f : X → X be a
mapping such that for some positive integer n, f n is contraction on X. Then, f
has a unique fixed point.

Proof. By BCP, f n has a unique fixed point, say x ∈ X with f n(x) = x. Since

f n+1(x) = f ( f n(x)) = f (x),

it follows that f (x) is a fixed point of f n, and thus, by the uniqueness of x, we have
f (x) = x , that is, f has a fixed point. Since, the fixed point of f is necessarily a fixed
point of f n, so is unique. �	
Remark 2.2. (a) Theorem 2.4 has importance in the scene that the mapping f is not

even assumed to be continuous while the same result was appeared in the liter-
ature with continuity assumption on the mapping f , see, for example, [15, 30].

(b) In some applications, it is the case that the mapping f is a Lipschitz which is not
necessarily a contraction, whereas some power of f is a contraction mapping.

Example 2.4. Consider the metric space X = C[a,b], of continuous real-valued
functions defined on the compact interval [a,b]. This is a Banach space with respect
to the sup norm. Define f : X → X by

f (u)(t) =
∫ t

a
u(s)ds.

Then,

| f (u)− f (v)| ≤ (b− a) |u− v| .

Now, we compute

f 2(u)(t) =
∫ t

a
(t − s)u(s)ds,

and inductively,

f n(u)(t) =
1

(n− 1)!

∫ t

a
(t − s)n−1u(s)ds.

Thus, we get

| f n(u)− f n(v)| ≤ (b− a)n

n!
|u− v| .
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Hence, f n is a contraction map for all values of n for which (b−a)n

n! < 1. It follows
that f has the unique fixed point u = 0.

Remark 2.3. It was important in the proof of BCP that the contraction constant h
be strictly less than 1. That gave us control over the rate of convergence of f n(x0)
to the fixed point since hn → 0 as n → ∞. If we consider f is contractive mapping
instead of a contraction, then we lose that control and indeed a fixed point need not
exist.

Example 2.5. Let I be a closed interval in R and f : I → I be differentiable with
| f ′(t)|< 1 for all t. Then, the mean-value theorem implies | f (x)− f (y)|< |x−y| for
all x �= y in I. The following three functions satisfy this condition, where I = [1,∞)
in the first case and I = R in the second and third cases:

f (x) = x+
1
x

; f (x) =
√

x2 + 1; f (x) = log(1+ exp(x)).

In each case, f (x) > x, so none of these functions has a fixed point in I.

Despite such examples, there is a fixed point theorem of Edelstein [30] when
d( f (x), f (y)) < d(x,y) for all x �= y provided the space is compact, which is not the
case in the previous example.

Similarly, a nonexpansive mapping on a complete metric space need not has a
fixed point. For instance, consider the translation operator by a nonzero vector in
a Banach space, which is clearly a nonexpansive fixed point free mapping. On the
other hand, a fixed point of a nonexpansive map need not be unique. For instance,
consider an identity operator, which is obviously nonexpansive and rich with fixed
points. Thus the fixed point theory of nonexpansive mappings is fundamentally
different from that of the contraction mapping, and thus we shall not discuss in
this chapter.

Remark 2.4. It is worth to mention that on the one hand, the BCP is very forceful
and simple, and it became a classical tool in nonlinear analysis. But, on the other
hand, Connell [26] gave an example of a metric space X such that X is not complete
and every contraction on X has a fixed point. Thus, Theorem 2.1 cannot characterize
the metric completeness of X which means the notion of contractions is too strong
from this point of view.

A mapping f on a metric space (X ,d) is called Kannan mapping if there exists
h ∈ [0, 1

2 ) such that

d( f (x), f (y)) ≤ h {d(x,T x)+ d(y,Ty)} , for all x,y ∈ X .

Kannan [44] proved that if X is complete, then every Kannan mapping has a fixed
point. We note that Kannan fixed point theorem is not an extension of the BCP. In
our opinion, Kannan theorem is also very important because Subrahmanyam [85]
proved that Kannan theorem characterizes the metric completeness. That is, a metric
space X is complete if and only if every Kannan mapping on X has a fixed point.
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2.4 Some Other Extensions of BCP for Single-Valued
Mappings

There have been numerous extensions of a milder form of BCP. In this section we
present some of these.

The first generalization in this direction which received a significant importance
is the following result of Rakotch [76].

Theorem 2.5. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies

d( f (x), f (y)) ≤ η(d(x,y))d(x,y), for all x,y ∈ X ,

where η is a decreasing function on R
+ to [0,1). Then, f has a unique fixed point.

A variant of Rokotch’s theorem has been given by Geraghty [33], in which the
function η satisfies the simple condition that η(tn)→ 1 ⇒ tn → 0.

In [14], Boyd and Wong obtained a more general result as follows.

Theorem 2.6 (Boyd–Wong Theorem). Let (X ,d) be a complete metric space,
and suppose that f : X → X satisfies

d( f (x), f (y)) ≤ ψ(d(x,y)), for all x,y ∈ X ,

where ψ : R → [0,∞) is upper semicontinuous from the right (that is, for any
sequence tn ↓ t ≥ 0 ⇒ limsup

n→∞
ψ(tn) ≤ ψ(t)) and satisfies 0 ≤ ψ(t) < t for t > 0.

Then, f has a unique fixed point.

Proof. Let x0 be an arbitrary but fixed element in X . Define a sequence of iterates
{xn} in X by

xn = f (xn−1) (= f n(x0)), for all n ≥ 1.

Set an = d(xn−1,xn). Note that the sequence {an} is monotone decreasing and
bounded below, thus it is convergent and we let lim

n→∞
an = a. If a > 0, we obtain

a contradiction. Indeed,

an+1 ≤ ψ(an),

and thus, a ≤ ψ(a), which contradicts to the property of ψ , and therefore, {an}
converges to 0. Now, we show that {xn} is a Cauchy sequence. Suppose that this is
not so. Then, there exists ε > 0 such that for any k ∈ N, there is mk > nk ≥ k such
that we have the relation

dk = d(xmk ,xnk)≥ ε.
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Of course we can assume that d(xm,xm−1)≤ ε and thus we have

dk < d(xmk ,xmk−1)+ d(xmk−1,xnk)≤ amk + ε ≤ ak + ε,

which implies that dk → 0. On the other hand

dk ≤ d(xmk ,xmk+1)+ d(xmk+1,xnk+1)+ d(xnk+1,xnk)

≤ 2ak +ψ(dk).

It follows that ε ≤ ψ(ε), a contradiction. Hence {xn} is a Cauchy sequence in X .
Since X is complete, xn → z ∈ X . Thus by the continuity of f , we get f (z) = z.
Uniqueness of z follows from the contractive condition. �	
Remark 2.5. In fact, two key steps involved in proving the existence of fixed point
in each of the above results, showing that for given x0 ∈ X , the iterative sequence
xn = f n(x0) = f (xn−1) is a Cauchy sequence in the underlying spaces and then the
continuity of the mapping guarantees the required fixed point.

Remark 2.6. In [14], Boyd and Wong observed that the upper semicontinuity
condition of ψ can be dropped if the space X is metrically convex. While in [62],
Matkowski further extended this result by assuming that ψ is continuous at 0 and
that there exists a sequence tn ↓ 0 for which ψ(tn)< tn.

The following variant result is due to Matkowski [63], where the continuity
condition on ψ is replaced with another suitable assumption.

Theorem 2.7. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies

d( f (x), f (y)) ≤ ψ(d(x,y)), for all x,y ∈ X ,

where ψ : (0,∞) → (0,∞) is monotone nondecreasing and satisfies lim
n→∞

ψn(t) = 0

for all t > 0. Then, f has a unique fixed point.

Proof. Let x0 be an arbitrary but fixed element in X . Define a sequence of iterates
{xn} in X by

xn = f (xn−1) (= f n(x0)), for all n ≥ 1.

Set an = d(xn+1,xn). Note that

0 ≤ limsup
n→∞

an ≤ limsup
n→∞

ψn(d(x1,x0)) = 0.

Thus, lim
n→∞

an = 0. Now, we show that {xn} is a Cauchy sequence. Also note that for

any ε > 0, ψ(ε)< ε. And since lim
n→∞

an = 0, so for ε > 0, we can choose n such that

an ≤ ε −ψ(ε). Now, define
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M = {x ∈ X : d(x,xn)≤ ε}.

Then for any y ∈ M, we have

d( f (y),xn) ≤ d( f (y), f (xn))+ d( f (xn),xn)

≤ ψ(d(y,xn))+ d(xn+1,xn)

≤ ψ(ε)+ ε −ψ(ε) = ε.

Thus f (y) ∈ M, that is; f (M)⊆ M. It follows that d(xm,xn)≤ ε ∀m ≥ n. We obtain
the conclusion by following the rest of the proof as in Theorem 2.6 �	

Using somewhat different approach Meir and Keeler [64] extended Theorem 2.6
as follows.

Theorem 2.8. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies the condition: for each ε > 0, there exists δ > 0 such that for all x,y ∈ X,

ε ≤ d(x,y)≤ ε + δ ⇒ d( f (x), f (y)) ≤ ε. (2.6)

Then, f has a unique fixed point.

Clearly, the condition (2.6) implies that the mapping f is contractive. Thus, f
is continuous and has a unique fixed point if it exists. Further, the condition (2.6)
implies d(xn,xn+1) decreasing to zero. Finally, it is easy to show that {xn} is a
Cauchy sequence in a complete metric space X by using the contrary technique.

In [21], Ćirić has obtained the following generalization of the BCP.

Theorem 2.9. Let (X ,d) be a complete metric space, and let f : X → X be a quasi-
contraction, that is, for a fixed constant h < 1

d( f (x), f (y)) ≤ hmax{d(x,y),d(x, f x),d(y, f y),d(x, f y),d(y, f x)} , for all x,y ∈ X .

(2.7)

Then, f has a unique fixed point.

It has been observed in [79] that Theorem 2.9 is also true if we replace (2.7) with
the following equivalent contractive condition.

d( f (x), f (y))≤h max

{
d(x,y),d(x, f (x)),d(y, f (y)),

1
2
[d(x, f (y))+d(y, f (x))]

}
.

(2.8)

Several such type of contractive conditions have been studied by Rhoades [79],
Jachymaski [39], and Ćirić [22].
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Asymptotic fixed point theory involves assumptions about the iterates of the
mapping in question. In fact the concept of asymptotic contractions is suggested in
Theorem 2.3 which is the earliest extension of Banach contraction principle, (also
see Theorem 2.4). For further historical comments, see, for example, [51].

Let Ψ denote the class of all mappings ψ : [0,∞) → [0,∞) such that ψ is
continuous, and ψ(t)< t for all t > 0.

Note that if (X ,d) is any complete metric space and f : X → X is any mapping
satisfying

d( f (x), f (y)) ≤ ψ(d(x,y)), for all x,y ∈ X ,

for any ψ ∈Ψ , then by Theorem 2.6, f has a unique fixed point.
Using the Cantor’s intersection theorem, Kirk [49] obtained the following

asymptotic version of Theorem 2.6.

Theorem 2.10. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies

d( f n(x), f n(y))≤ ψn(d(x,y)), for all x,y ∈ X ,

where ψn : [0,∞) → [0,∞) are continuous and ψn → ψ ∈ Ψ uniformly. Further,
assume that some orbit of f is bounded. Then, f has a unique fixed point.

See also [9, 41, 52] which are dealing with asymptotic version of Theorem 2.6.
In [91] Suzuki obtained a result for asymptotic contractions of final type and claims
his result is the final generalization in some sense.

In [4], Alber et al. suggested a generalization of BCP in the setting of Hilbert
spaces and subsequently Rhoades [80] extended and improved their result to metric
spaces.

Theorem 2.11. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies the following inequality

d( f (x), f (y)) ≤ d(x,y)−ψ(d(x,y)), for all x,y ∈ X , (2.9)

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that
ψ(t) = 0 if and only if t = 0. Then, f has unique fixed point.

Note that if one takes ψ(t) = (1− h)t where 0 < h < 1, then the inequality (2.9)
reduces to the inequality (2.1).

Remark 2.7. In the literature, a map f : X → X with inequality (2.9) is known
as weakly contractive map. The function ψ involved in Theorem 2.11 known as
alternating distance (also called control function), which was initially used in metric
fixed point theory by Khan et al. [47]. This function and its generalizations have
been used in fixed point problems in metric and probabilistic metric spaces, see, for
example, [65, 67, 81, 82].
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In [28], the following generalization has been appeared.

Theorem 2.12. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies the following inequality

φ(d( f (x), f (y))) ≤ φ(d(x,y))−ψ(d(x,y)), for all x,y ∈ X ,

where both the functions φ ,ψ : [0,∞) → [0,∞) are continuous and nondecreasing
such that ψ(t) = 0 = φ(t) if and only if t = 0. Then, f has unique fixed point.

Recently, more general results in this direction have been appeared. For example,
one of the results in [20] as follows.

Theorem 2.13. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies the following inequality

φ
(
d( f (x), f (y))

) ≤ φ(m(x,y))−ψ (max{d(x,y),d(y, f (y))}) ,
where

m(x,y) = max

{
d(x,y),d(x, f (x)),d(y, f (y)),

1
2
[d(x, f (y))+ d(y, f (x))]

}
,

for all x,y ∈ X , and φ ,ψ : [0,∞) → [0,∞) are functions such that φ is alternating
distance and ψ is continuous with ψ(t) = 0 if and only if t = 0. Then, f has unique
fixed point.

A direct consequence is the following result.

Corollary 2.3. Let (X ,d) be a complete metric space, and suppose that f : X → X
satisfies the following inequality for all x,y ∈ X ,

φ(d( f n(x), f n(y)))

≤ φ
(

max

{
d(x,y),d(x, f n(x)),d(y, f n(y)),

1
2
[d(x, f n(y))+ d(y, f n(x))]

})

−ψ(max{d(x,y),d(y, f n(y)}),

where n is a positive integer and φ ,ψ : [0,∞)→ [0,∞) are functions such that φ is
alternating distance and ψ is continuous with ψ(t) = 0 if and only if t = 0. Then, f
has unique fixed point.

Example 2.6. Let X = {0,1,2,3, . . .}. Let d : X ×X → R be given as

d(x,y) =

{
x+ y, if x �= y,
0, if x = y.

Then, (X ,d) is a complete metric space. Define φ ,ψ : [0,∞)→ [0,∞) by φ(t) = t2

for all t, and
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ψ(t) =

{
t2

2 , if t ≤ 1,

1
2 , if t > 1.

Let f : X → X be defined by

f (x) =

{
x− 1, if x �= 0,
0, if x = 0.

Then, φ ,ψ and f satisfy all the conditions of Theorem 2.13 and clearly 0 is the
unique fixed of f .

Recently, Suzuki [88] established a new type of generalization of the BCP and
characterizes the metric completeness of the underlying space.

Theorem 2.14. Let (X ,d) be a complete metric space, and suppose that f : X → X .
Define a nonincreasing function ψ : [0,1)→ (1/2,1] by

ψ(h) =

⎧
⎪⎨
⎪⎩

1, if 0 ≤ h ≤ 1
2 (
√

5− 1),
1−h
h2 , if 1

2(
√

5− 1)< h < 1√
2
,

1
1+h , if 1√

2
≤ h < 1.

Assume that there exists h ∈ [0,1) such that

ψ(h)d(x, f (x)) ≤ d(x,y) ⇒ d( f (x), f (y)) ≤ hd(x,y), for all x,y ∈ X .

Then, f has a unique fixed point.

Proof. Since ψ(h) ≤ 1, we get ψ(h)d(x, f (x)) ≤ d(x, f (x)) for every x ∈ X . Note
that

d( f (x), f 2(x))≤ hd(x, f (x)) ∀x ∈ X .

Let x0 be an arbitrary but fixed element in X . Define a sequence of iterates {xn} in
X by

xn = f (xn−1) (= f n(x0)), for all n ≥ 1.

Then, we have d(xn,xn+1)≤ hnd(x0, f (x0)), and thus ∑∞
n=1 d(xn,xn+1)< ∞. By the

usual arguments, we get {xn} is a Cauchy sequence. Since X is complete, {xn}
converges to some point z ∈ X . Then, for any x ∈ X\{z}, there exists n0 ∈ N such
that d(xn,z)≤ 1

3 d(x,z) for all n ∈N with n ≥ n0. Now, we have
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ψ(h)d(xn, f (xn)) ≤ d(xn, f (xn) = d(xn,xn+1)

≤ d(xn,z)+ d(xn+1,z)

≤ (2/3)d(x,z) = d(x,z)− d(x,z)/3

≤ d(x,z)− d(xn,z)≤ d(xn,x).

Thus, by hypothesis

d(xn+1, f (x)) ≤ hd(xn,x), n ≥ n0,

and hence, we get

d( f (x),z) ≤ hd(x,z), for all x ∈ X\{z}.

Now, for using the contrary arguments, we assume that f k(z) �= z for all k ∈ N.
Note that

d( f k+1(z),z) ≤ hkd( f (z),z), k ∈N.

In this situation, each of the following three cases of ψ yields contradiction.

• 0 ≤ h ≤ 1
2 (
√

5− 1),
• 1

2 (
√

5− 1)< h < 1√
2
,

• 1√
2
≤ h < 1

(see for detail [88]). Therefore, in all the cases, there exists some k ∈ N such that
f k(z) = z. Since { f n(z)} is a Cauchy sequence, we get f (z) = z. The uniqueness of
the fixed point follows from the fact that

d( f (x),z) ≤ hd(x,z), for all x ∈ X\{z}.

Indeed, if f (w) = w �= z, then d( f (w),z)≤ hd(w,z) implies d(w,z)< d(w,z), which
is not possible. �	

Obviously, the class of contraction mappings given in Theorem 2.14 contains the
class of usual contractions. However, it has been observed in [88] that Suzuki’s con-
tractions and Kannan’s contractions are independent but both types of contractions
characterize the metric completeness of the underlying spaces.

Remark 2.8. Recently, a number of results appeared on the existence of a unique
fixed point for a single-valued mapping f of a metric space (X ,d) endowed with
a partial order �. Indeed, almost all such results deal with monotone mapping
satisfying Banach contractive condition (2.1) with some restriction and for fixed
x0 ∈ X , x0 � f (x0) (or f (x0) � x0). The first result in this direction was proved by
Ran and Reurings [77], which is an analogue of the BCP in partially ordered sets.
They also presented several applications to linear and nonlinear matrix equations.
Subsequently, many fixed point results with interesting applications have appeared
in this direction, see, for example, [35–38, 69–71, 74, 97] and others.
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2.5 Caristi’s Fixed Point Theorem

In 1976, Caristi [19] proved a wonderful fixed point theorem on complete metric
spaces, which is related to the BCP and is equivalent to Ekland variational principle
[31]. The Caristi’s fixed point theorem has found many applications in nonlinear
analysis, see [10, 16, 40, 45, 52, 93] for detail discussion.

Definition 2.2. (a) A real-valued function ϕ defined on X is said to be lower
semicontinuous at x if for any sequence {xn} ⊂ X , we have

xn → x ∈ X ⇒ ϕ(x)≤ liminf
n→∞

ϕ(xn).

(b) A single-valued self-mapping f on a metric space (X ,d) is said to be Caristi
mapping if there exists a lower semicontinuous function ϕ : X → R

+ such that

d(x, f (x)) ≤ ϕ(x)−ϕ( f (x)), for all x ∈ X . (2.10)

Example 2.7. Each Banach contraction mapping f on a metric space (X ,d) is a
Caristi mapping with a function

ϕ(x) =
1

1− h
d(x, f (x)), for all x ∈ X ,

where h is a contraction constant.
Clearly, ϕ is a continuous real valued function on X and

ϕ( f x) ≤ h
1− h

d(x, f x) = hϕ(x).

Note that for all x ∈ X ,

d(x, f x) = (1− h)ϕ(x) = ϕ(x)− hϕ(x)≤ ϕ(x)−ϕ( f x),

that is, f is a Caristi mapping.

Remark 2.9. In fact, the class of single-valued Caristi mappings is very large,
including at least usual contractions, Ćirić contractive mappings and in particular
Kannan mapping.

Theorem 2.15 (Caristi’s Fixed Point Theorem). Let (X ,d) be a complete metric
space. Then, each Caristi map f : X → X has a fixed point.

Remark 2.10. The original proof of this results involved transfinite induction argu-
ments. But, after the appearance of this remarkable theorem of Caristi, numerous
papers were published on various proofs of this result. For example, see Wong [96],
Penot [75], Siegel [83], and others. An elegant and direct proof of the Caristi’s
fixed point theorem is given in Deimling [29]. An elementary and straightforward
approach is due to Brezis-Browder [16].



48 A. Latif

Remark 2.11. The key relation between Caristi’s fixed point theorem and BCP was
noted in Example 2.7. From the Caristi’s fixed point theorem one cannot expect the
all conclusions of the BCP. In the Caristi’s fixed point theorem, the fixed point need
not be unique and the sequence { f n(x0)} need not even converge to a fixed point
of f . Secondly, the map f satisfying (2.1) is continuous while the map f satisfying
(2.10) is not necessarily continuous.

Remark 2.12. It is well known that the fixed point property for contraction
mappings does not characterize metric completeness, see, for example, Suzuki
and Takahashi [87]. However, some characterizations of metric completeness have
been discussed by several authors. For example, Kirk [52] and Weston [95] proved
that a metric space is complete if and only if it has the fixed point property for Caristi
mappings. Moreover, Shiojiet et al. [84] proved that a metric space is complete if
and only if it has the fixed point property for Kannan mappings. Thus, Kannan
mappings and Caristi maps characterize metric completeness, while contraction
mappings do not.

Regarding the problem of characterizations of metric completeness by means
of contraction mappings, Suzuki and Takahashi [87] and independently Anisiu and
Anisiu [5] proved that a convex subset Y of a normed space is complete if and only
if every contraction f : Y → Y has a fixed point in Y . The most elegant result in this
direction is due to Bessage [12] which states that if any mapping f on an arbitrary
set X and each of its iterates f n has a unique fixed point, then for each h∈ (0,1) there
exists a metric dh on X for which X is complete and f is a contraction mapping with
contraction constant h. See [86] for more on Ekeland’s variational principle and the
equivalence between the Caristi’s fixed point result and the completeness of metric
spaces. Also, see [2, 3, 6–8, 61, 73].

2.6 Some Extensions of BCP Under Generalized Distances

In recent years, distances in metric have been introduced which generalize metrics
and which have applications to obtaining the solutions of several new important
problems in nonlinear analysis. The pioneering effort in this direction is papers
of Kada et al. [43], Suzuki and Takahashi [87], Suzuki [89, 90], Lin and Du
[59,60], and Ume [99] in metric spaces. In these papers, among other things, various
distances are introduced, and relations between these distances with applications are
established.

In [43], Kada et al. introduced a notion of w-distance on a metric space and
using this notion, they improved the Caristi’s fixed point theorem, Ekland variational
principle, and Takahashi minimization theorem. Using the notion of w-distance,
Suzuki and Takahashi [87] have introduced notions of single-valued and multivalued
weakly contractive (in short, w-contractive) mappings and proved fixed point
results for such mappings. Consequently, they generalized the Banach Contraction
principle and Nadler’s fixed point result [68].
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Definition 2.3. A function p : X ×X →R
+ is called a w-distance on X if it satisfies

the following for any x, y, z ∈ X :

(w1) p(x,z)≤ p(x,y)+ p(y,z);
(w2) a map p(x, .) : X → [0,∞) is lower semicontinuous;
(w3) for any ε > 0, there exists δ > 0 such that p(z,x) ≤ δ and p(z,y) ≤ δ imply

d(x,y)≤ ε.

Note that, in general for x,y ∈ X , p(x,y) �= p(y,x) and not either of the
implications p(x,y) = 0 ⇔ x = y necessarily hold.

Example 2.8. (a) The metric d is a w-distance on X .
(b) Let (Y,‖.‖) be a normed space. Then, the functions p1, p2 : Y × Y → R

+

defined by

p1(x,y) = ‖y‖ and p2(x,y) = ‖x‖+ ‖y‖, for all x,y ∈ Y,

are w-distances.

For other examples and related results, see [43]. Here we state two useful
lemmas. For further details, see [43, 60, 98].

Lemma 2.1. Let (X ,d) be a metric space and let p be a w-distance on X . Let
{xn} and {yn} be sequences in X and let {αn} and {βn} be sequences in [0,∞)
converging to 0. Then, the following statements hold for every x,y,z ∈ X:

(a) If p(xn,y) ≤ αn and p(xn,z) ≤ βn for any n ∈ N, then y = z, in particular, if
p(x,y) = 0 and p(x,z) = 0, then y = z;

(b) If p(xn,yn)≤ αn and p(xn,z)≤ βn for any n ∈N, then {yn} converges to z;
(c) If p(xn,xm)≤ αn for any n,m ∈N with m > n, then {xn} is a Cauchy sequence;
(d) If p(y,xn)≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

Lemma 2.2. Let (X ,d) be a metric space and let p be a w-distance on X . Let K be
a closed subset of X. Suppose that there exists u ∈ X such that p(u,u) = 0. Then,
p(u,K) = 0 if and only if u ∈ K, where p(u,K) = infy∈K p(u,y).

Using the concept of w-distance, Kada et al. [43] improved Caristi’s fixed point
theorem as follows:

Theorem 2.16. Let (X ,d) be a complete metric space and p be a w-distance on X .
Then, each Caristi mapping f on X with respect to p has a fixed point x0 ∈ X and
p(x0,x0) = 0.

While Suzuki and Takahashi [87] improved the BCP as follows.

Theorem 2.17. Let (X ,d) be a complete metric space and p be a w-distance on X .
Then, each contraction mapping f on X with respect to p has a unique fixed point
x0 ∈ X and p(x0,x0) = 0.
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In [87], they also obtained a result on characterization of metric completeness.

Theorem 2.18. Let (X ,d) be a metric space. Then, X is complete if and only if
every contraction mapping f on X with respect to p has a fixed point in X.

Among others results, Ume [100] improved Theorem 2.9 for w-distance.

Theorem 2.19. Let (X ,d) be a complete metric space and let p be a w-distance
on X . Let f : X → X be a mapping such that for a fixed constant h < 1 and for all
x,y ∈ X,

p( f (x), f (y)) ≤ h max{p(x,y), p(x, f x), p(y, f y), p(x, f y), p(y, f x)} ,
and inf{p(x,u)+ p(x, f x) : x ∈ X} > 0 for every u ∈ X with u �= f (u). Then, f has
a unique fixed point x0 ∈ X and p(x0,x0) = 0.

A number of fixed point results w. r. t w-distance have been appeared in the
literature.

Generalizing the concept of w-distance, Suzuki [89] introduced the following
notion of τ-distance on metric spaces.

Definition 2.4. A function p : X × X → R
+ is said to be a τ-distance on X if it

satisfies the following conditions for any x, y, z ∈ X :

(τ1) p(x,z)≤ p(x,y)+ p(y,z);
(τ2) η(x,0) = 0 and η(x, t) ≥ t for all x ∈ X and t ≥ 0, and η is concave and

continuous in its second variable;
(τ3) lim

n
xn = x and lim

n
sup{η(zn, p(zn,xm)) : m ≥ n} = 0 imply p(u,x) ≤ lim

n
inf

p(u,xn) for all u ∈ X ;
(τ4) lim

n
sup{p(xn,ym) : m ≥ n} = 0 and limn η(xn, tn) = 0 imply

lim
n

η(yn, tn) = 0;

(τ5) lim
n

η(zn, p(zn,xn)) = 0 and lim
n

η(zn, p(zn,yn)) = 0 imply lim
n

d(xn,yn) = 0.

It has been observed in [89] that (τ2) can be replaced by

(τ2)
′ inf{η(x, t) : t ≥ 0} = 0 for all x ∈ X , and η is nondecreasing in its second

variable.

In general, a τ-distance p does not necessarily satisfy p(x,x) = 0. The metric d
is a τ-distance on X . Each w-distance on a metric space X is also a τ- distance on
X . Other examples and properties of τ-distance are given in [89].

Using the concept of τ-distance, Susuki [89] improved the BCP and Caristi’s
fixed point theorem as under:

Theorem 2.20. Let (X ,d) be a complete metric space and p be a τ-distance on X .
Then, each contraction mapping f on X with respect to p has a unique fixed point
x0 ∈ X and p(x0,x0) = 0.

Theorem 2.21. Let (X ,d) be a complete metric space and p be a τ-distance on X .
Then, each Caristi’s mapping f on X with respect to p has a fixed point x0 ∈ X and
p(x0,x0) = 0.
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Using this result, Suzuki [93] obtained generalized Caristi’s fixed point theorem
as follows.

Theorem 2.22. Let (X ,d) be a complete metric space, p be a τ-distance on X and
let g : X → (0,∞) be a function such that for some r > 0

sup{g(x) : x ∈ X ,ψ(x)≤ inf
z∈X

ψ(z)+ r}< ∞,

where ψ : X → (0,∞) is a lower semicontinuous function. Let f : X → X be a map
such that for each x ∈ X ,

p(x, f (x)) ≤ g(x)(ψ(x)−ψ( f (x))).

Then, there exists xo ∈ X such that f (xo) = xo and p(xo,xo) = 0.

See also [90] for further results in this direction. Recently, Ume [99] introduced a
new concept of a distance called u-distance, which generalizes w-distance, TataruŠs
distance [94], and τ-distance. Some interesting fixed point results including BCP
with respect to u-distance appeared in [13,99]. In the literature, some other distances
have introduced, and among others results the BCP has been also studied with
respect to these generalized distances see, for example, [3, 59, 72, 101].

2.7 Multivalued Versions of BCP

Investigations on the existence of fixed points for multivalued contraction mappings
in the setting of metric spaces were initiated by Nadler in 1979. Using the concept
of Hausdorff metric, he established multivalued version of the Banach contraction
principle.

Let (X ,d) be a metric space. We denote by 2X the collection of all nonempty
subsets of X , Cl(X) the collection of all nonempty closed subsets of X , CB(X) the
collection of all nonempty closed bounded subsets of X , and H the Hausdorff metric
on CB(X), that is,

H(A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)}, for all A,B ∈CB(X),

where d(x,A) = infy∈A d(x,y). In the metric space (CB(X),H), lim
n→∞

An = A means

that lim
n→∞

H(An,A) = 0. Let A1,A2 ∈ CB(X). Then, for each x ∈ A1 and ε > 0, there

is y ∈ A2 such that

d(x,y)≤ H(A1,A2)+ ε.
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Example 2.9. (a) Let X = R, A = [0,1], B = [2,4]. Then,

sup
a∈A

d(a,B) = 2, sup
b∈B

d(b,A) = 3, and H(A,B) = 3.

(b) Let A = Br(a), B = Bs(b), a,b ∈ (X ,d), 0 < r ≤ s. Then, H(A,B) = d(a,b)+
s− r.

Definition 2.5. Let (X ,d) be a metric space and let T : X → 2X .

(a) An element x ∈ X is called a fixed point of a multivalued mapping T if x ∈ T (x).
We denote Fix(T ) = {x ∈ X : x ∈ T (x)}.

(b) A sequence {xn} in X is said to be an iterative sequence of T at x0 ∈ X if
xn ∈ T (xn−1) for all n ∈ N.

(c) T is said to be a contraction [68] if for a fixed constant h < 1 and for each
x,y ∈ X ,

H(T (x),T (y))≤ h d(x,y). (2.11)

Such a mapping T is also known as Nadler contraction.

Using the concept of Hausdorff metric, Nadler [68] proved the following theorem
on the existence of fixed points for multivalued mappings, known as Nadler
contraction principle (NCP).

Theorem 2.23 (Nadler’ Fixed Point Theorem). Let (X ,d) be a complete metric
space. Then, each contraction mapping T : X →CB(X) has a fixed point.

Proof. Let x0 ∈ X be an arbitrary fixed and let x1 ∈ T (x0). Then, there exists x2 ∈
T (x1) such that

d(x1,x2)≤ H(T (x0),T (x1))+ h,

where h < 1 is a contraction constant. Continuing this iterative process, in general,
there exists xn+1 ∈ T (xn) for each n ∈N such that

d(xn,xn+1)≤ H(T (xn−1),T (xn))+ hn ≤ ·· · ≤ hnd(x0,x1)+ n hn.

Thus, we have

∞

∑
n=0

d(xn,xn+1))≤ d(x0,x1)

(
∞

∑
n=0

hn

)
+

∞

∑
n=0

n hn < ∞.

Hence, {xn} is a Cauchy sequence, and thus, there exists some x ∈ X such that
lim
n→∞

xn = x. Now the continuity of T implies lim
n→∞

H(T (xn),T (x)) = 0. Since xn ∈
T (xn−1), we have lim

n→∞
d(xn,T (x)) = 0, which implies x ∈ T (x) because T (x) is

closed. �	
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Remark 2.13. (a) We observed in the above proof that using the property of the
Hausdorff metric, we get an iterative sequence which is a Cauchy and converges
to the fixed point of T.

(b) In contrast to its single-valued counterpart, fixed point in Theorem 2.23 need
not be unique. Indeed, if X is bounded, then the map T (x) = X , for all x ∈ X
satisfies the conditions of Theorem 2.23.

Without using an iterative methods, a beautiful proof of Theorem 2.23 is given
in [38] by Jachymski. The proof depends on the Axiom of choice and the Caristi’s
fixed point theorem.

Theorem 2.24. Caristi’s fixed point result (Theorem 2.15) yields NCP
(Theorem 2.23).

Proof. Let T : X → CB(X) be a Nadler contraction mapping with contraction
constant h. Choose real α such that h < α < 1. Let x ∈ X , then

{y ∈ T (x) : αd(x,y)≤ d(x,T (x))} �= /0.

By the axiom of choice, there is a map f : X → X such that f (x) ∈ T (x) and
αd(x, f (x)) ≤ d(x,T (x)). Thus, we have

d( f (x),T ( f (x))) ≤ H(T (x),T ( f (X)))≤ h(d(x, f (x))).

Note that

d(x, f (x)) =
1

α − h
(αd(x, f (x))− hd(x, f (x)))

≤ 1
α − h

(d(x,T (x))− d( f (x),T ( f (x)))) .

Set ϕ(x) = 1
α−h d(x,T (x)). Then, we have

d(x, f (x)) ≤ ϕ(x)−ϕ( f (x)).

Also, note that for each x,y ∈ X , we get

|ϕ(x)−ϕ(y)| ≤ 1
α − h

{d(x,y)+H(T (x),T (y))} ≤ h+ 1
α − h

d(x,y),

and thus, ϕ is continuous. Hence, by Theorem 2.15, there exists a fixed point in X .
�	

At the same time another proof of Theorem 2.23 has appeared in [42] without
using an iterative technique.

In [66], Mizoguchi and Takahashi generalized Nadler’s fixed point theorem as
follows (which is also a partial answer to the problem proposed by Reich [78]).
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Theorem 2.25. Let (X ,d) be a complete metric space and let T : X →CB(X) be a
mapping such that for each x,y ∈ X ,

H(T (x),T (y))≤ k(d(x,y))d(x,y),

where k is a function from [0,∞) to [0,1) satisfying limsup
r→t+

k(r)< 1, for every t ≥ 0.

Then, T has a fixed point.

Remark 2.14. In the original statement, the domain of the function k is (0,∞).
However both are equivalent because d(x,y) = 0 ⇒ H(T (x),T (y)) = 0. Also, note
that the stronger condition assumed on k implies that k(t) < h for some 0 < h < 1.
Thus with this condition, one may get that the map T is a contraction over a region
for which d(x,y) is sufficiently small.

Remark 2.15. In fact, the original proof of Theorem 2.25 is not simple. Alternative
proofs appeared in [27, 81, 102]. The simplest alternative proof given in [92].

Proof. Define a function β : [0,∞)→ [0,1) by β (t) = (k(t)+ 1)/2. Then, we have

limsup
r→t+0

β (r)< 1, for all t ≥ 0,

and for all x,y ∈ X and u ∈ T (x), there exists an element v ∈ T (x) such that

d(u,v)≤ β (d(x,y))d(x,y).

Thus, we can define a sequence {xn}in X such that for all integer n≥ 1, xn+1 ∈ T (xn)
and

d(xn+1,xn+2)≤ β (d(xn,xn+1))d(xn,xn+1).

For convenience, we put an = d(xn,xn+1). Hence, the sequence of nonnegative
real numbers {an} is non-increasing and thus converges to some nonnegative real
number α . Note that there exist some b ∈ [0,1) and ε > 0 such that β (r)≤ b for all
r ∈ [α,α + ε]. Now we can choose some integer m ≥ 1 such that m ≤ an ≤ α + ε
with n ≥ m. Note that

an+1 ≤ β (an)an ≤ ban,

and thus, we have

∞

∑
n=1

an < ∞.

Hence, {xn} is a Cauchy sequence in the complete space X . Let {xn} converges to
some z ∈ X . Note that
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d(z,T (z)) = lim
n→∞

d(xn+1,T (z))

≤ lim
n→∞

H(T (xn),T (z))

≤ lim
n→∞

β (d(xn,z))d(xn,z)

≤ lim
n→∞

d(xn,z) = 0.

Since T (z) is closed, we get z ∈ T (z). �	
Recently, Kikkawa and Suzuki [48] generalized Nadler’s fixed point theorem and

Theorem 2.14.

Theorem 2.26. Define a strictly increasing function η from [0,1) onto ( 1
2 ,1] by

η(h) =
1

1+ h
.

Let (X ,d) be a complete metric space and let T : X → CB(X). Assume that there
exists fixed h ∈ [0,1) such that

η(h)d(x,T (x))≤ d(x,y)⇒ H(T (x),T (y))≤ hd(x,y), for all x,y ∈ X .

Then, T has a fixed point.

Proof. Take a real number k with 0 < h < k < 1. Let x0 ∈ X be an arbitrary fixed
and let x1 ∈ T (x0). Then we have

η(h)d(x0,T (x0))≤ η(h)d(x0,x1)≤ d(x0,x1).

From the hypothesis, it follows that

d(x1,T (x1))≤ H(T (x0),T (x1))≤ hd(x0,x1).

So, there exits x2 ∈ T (x1) such that d(x1,x2) ≤ kd(x0,x1). Continuing this pro-
cess, we get a sequence {xn} in X such that xn ∈ T (xn−1) and d(xn−1,xn) ≤
kd(xn−2,xn−1). Thus, we have

∞

∑
n=1

d(xn−1,xn)≤
∞

∑
n=1

kn−1d(x0,xn)< ∞,

and hence {xn} is a Cauchy sequence. Since X is complete, {xn} converges to some
point z ∈ X . We next show that

d(z,T (x)) ≤ hd(z,x), for all x ∈ X \ {z}.
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Since X is complete, {xn} converges to some point z ∈ X . Then, for any x ∈ X\z,
there exists n0 ∈ N such that d(xn,z) ≤ 1

3 d(x,z) for all n ∈ N with n ≥ n0. Now we
have

η(h)d(xn,T (xn)) ≤ d(xn,T (xn))≤ d(xn,xn+1)

≤ d(xn,z)+ d(xn+1,z)

≤ (2/3)d(x,z) = d(x,z)− d(x,z)/3

≤ d(x,z)− d(xn,z)≤ d(xn,x).

Hence, H(T (xn,T (x)) ≤ hd(xn,x), it follows that d(T (x),xn+1) ≤ hd(x,xn) for all
n ∈ N with n ≥ n0. Thus, we get

d(T (x),z) ≤ hd(x,z), for all x ∈ X\{z}.

We next prove that H(T (x),T (z))≤ hd(x,z) for all x ∈ X . If d(x,z) = 0, then we are
done. So we assume that d(x,z) > 0. Then for every n ∈ N, there exists yn ∈ T (x)
such that

d(z,yn)≤ d(z,T (x))+
1
n

d(x,z).

For n ∈N, We have

d(x,T x) ≤ d(x,yn)≤ d(x,z)+ d(z,yn)

≤ d(x,z)+ d(z,T (x))+
1
n

d(x,z)

≤ d(x,z)+ hd(x,z)+
1
n

d(x,z)

=

(
1+ h+

1
n

)
d(x,z),

and hence, 1
1+h d(x,T (x))≤ d(x,z). From the hypothesis, we have H(T (x),T (z))≤

hd(x,z). Finally, note that

d(z,T (z)) = lim
n→∞

d(xn+1,T (z)) ≤ lim
n→∞

H(T (xn),T (z))≤ lim
n→∞

hd(xn,z) = 0,

and since T (z) is closed, we get z ∈ T (z). �	
Many modifications and generalizations of Nadler’s Theorem have been devel-

oped in successive years. In most cases, the nature of the Hausdorff metric is not
used and the existence part of results can be proved without using the concept
of a Hausdorff metric. For instance, recently, Feng and Liu [32] obtained some
interesting fixed point results for multivalued mappings and extended Nadler’s result
as follows.
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Theorem 2.27. Let (X ,d) be a complete metric space and let T : X →Cl(X) be a
mapping such that for any fixed constants h,b ∈ (0,1), h < b, and for each x ∈ X,
there is y ∈ T (x) satisfying the following conditions:

b d(x,y)≤ d(x,T (x)),

and

d(y,T (y))≤ h d(x,y).

Then, Fix(T ) �= /0 provided the real-valued function g on X, g(x) = d(x,T (x)) is
lower semicontinuous.

Proof. Let x0 ∈ X be an arbitrary fixed. Then by hypothesis, there exists x1 ∈ T (x0)
such that

bd (xo,x1)≤ d (x0,T (x0)) and d (x1,T (x1))≤ hd (xo,x1) .

Similarly, there is x2 ∈ T (x1) satisfying

b d (x1,x2)≤ d (x1,T (x1)) and d (x2,T (x2))≤ h d (x1,x2) .

Continuing this process, we get a sequence {xn} in X satisfying xn+1 ∈ T (xn),

bd (xn,xn+1)≤ d (xn,T (xn)) and d (xn+1,T (xn+1))≤ hd (xn,xn+1) ,

for all n = 0,1,2, . . .. Thus, from the last two inequalities, we have for all n =
0,1,2, . . .,

d (xn+1,xn+2)≤ h
b

d (xn,xn+1) , (2.12)

and

d (xn+1,T (xn+1))≤ h
b

d (xn,T (xn)) . (2.13)

Note that

d (xn+1,T (xn+1))≤ d (xn,T (xn)) .

Thus, {d (xn,T (xn))} is a decreasing sequence. Further, for each n ∈ {0,1,2, . . .}
we have

d (xn,xn+1)≤ hn

bn d (xo,x1) ,
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and

d (xn,T (xn))≤ hn

bn d (xo,T (xo)) .

Since h < b, so we get that d (xn,T (xn)) → 0 as n → ∞. Set a = h
b . Then, for

m,n ∈ N with m > n, we have

d (xm,xn) ≤ d (xm,xm−1)+ d (xm−1,xm−2)+ · · ·+ d (xn+1,xn)

≤ am−1d (xo,x1)+ am−2d (xo,x1)+ · · ·+ and (xo,x1)

≤ an

1− a
d (xo,x1) ,

Due to h < b, we have an → 0 as n → ∞, and hence {xn} is a Cauchy sequence.
Since X is complete, {xn} converges to some point x ∈ X . We assert that x is a fixed
point of T. Note that the sequence of nonnegative terms { f (xn)} = {d (xn,T (xn))}
is decreasing to 0, and since f is lower semicontinous, we have

0 ≤ f (x)≤ liminf
n→∞

f (xn) = 0,

which implies f (x) = 0. Hence, the closeness of T (x) implies x ∈ T (x) . �	
Remark 2.16. Theorem 2.27 generalizes Nadler’s fixed point result. Indeed, if T
satisfies the condition of Nadler’s result, then the lower semicontinuity of function
f (x) = d(x,T (x)) follows from the contraction condition. Further, since T (x) is
closed and bounded, so there exists y ∈ T (x) such that

bd (x,y)≤ d (x,T (x)) , for b ∈ (0,1) .

Also,

d (y,T (y))≤ H (T (x) ,T (y))≤ hd (x,y) , for h ∈ (0,1) .

Thus, the existence of fixed point of T follows from the Theorem 2.27.

Klim and Wardowski [53] generalized Theorem 2.23 and Theorem 2.27. While in
[23,24], Ćirić generalized all the above-mentioned fixed point results of this section.

On the other hand, mutivalued versions of the BCP with respect to generalized
distances have appeared. Using w-distance, Suzuki and Takahashi [87] obtained
multivalued version of the BCP which is an improved version of the Nadler’s
fixed point theorem (Theorem 2.23).

Theorem 2.28. Let (X ,d) be a complete metric space and let p be a w-distance on
X . Let T : X →Cl(X) be a mapping such that for a fixed constant h ∈ [0,1) and for
any x,y ∈ X , u ∈ T (x), there is v ∈ T (y) satisfying
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p(u,v)≤ h p(x,y).

Then, there exists x0 ∈ X such that x0 ∈ T (x0) and p(x0,x0) = 0.

Proof. Let uo ∈ X be fixed and let u1 ∈ T (uo) . Then, there exists u2 ∈ T (u1) such
that

p(u1,u2)≤ hp(uo,u1) .

Continuing this process, we have a sequence {un} in X such that un+1 ∈ T (un) and

p(un,un+1)≤ hp(un−1,un) , for every n ∈N.

Thus, we have

p(un,un+1)≤ hp(un−1,un)≤ h2 p(un−2,un−1)≤ ·· · ≤ hn p(uo,u1) ,

and hence, for any n,m ∈N with m > n,

p(un,um) ≤ p(un,un+1)+ p(un+1,un+2)+ · · ·+ p(um−1,um)

≤ {hn + hn+1+ · · ·+ hm−1}p(uo,u1)

≤ hn

1− h
p(uo,u1)→ 0.

By Lemma 2.1, {un} is a Cauchy sequence . Thus, {un} converges to some vo ∈
X . Fix n ∈ N. Since {um} converges to vo and p(un, .) is lower semicontinuous,
we have

p(un,vo)≤ liminf
m→∞

p(un,um)≤ hn

1− h
p(uo,u1) .

Since un ∈ T (un−1) and vo ∈ X , by hypothesis there is wn ∈ T (vo) such that

p(un,wn)≤ hp(un−1,vo)≤ hn

1− h
p(uo,u1) .

By Lemma 2.1, {wn} converges to vo. Since T (vo) is closed, we have vo ∈ T (vo) .
For such vo, there exists v1 ∈ T (vo) such that

p(vo,v1)≤ hp(vo,vo) .

Thus, we also have a sequence {vn} in X such that vn+1 ∈ T (vn) and

p(vo,vn+1)≤ hp(vo,vn) , for every n ∈ N.
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Thus, we have

p(vo,vn)≤ hp(vo,vn−1)≤ ·· · ≤ hn p(vo,vo)→ 0 as n → ∞.

By Lemma 2.1, {vn} is a Cauchy sequence. Then, {vn} converges to a point xo ∈ X .
Since p(vo, .) is lower semicontinuous, we have

p(vo,xo)≤ liminf
n→∞

p(vo,vn)≤ 0,

and hence, p(vo,xo) = 0. Thus, for any n ∈ N, we have

p(un,xo) ≤ p(un,vo)+ p(vo,xo)

≤ hn

1− h
p(uo,u1)→ 0 as n → ∞.

So, by Lemma 2.1, we obtain vo = xo, and hence, p(vo,vo) = 0. �	
The following result is a generalization of the Banach contraction principle.

Corollary 2.4. Let (X ,d) be a complete metric space and p be a w-distance on X .
Then, each contraction mapping f on X with respect to p has a unique fixed point
x0 ∈ X and p(x0,x0) = 0.

Proof. From Theorem 2.28, there exists xo ∈ X with f (xo) = xo and p(xo,xo) = 0.
If yo = f (yo) , then we have

p(xo,yo) = p( f (xo) , f (yo))≤ hp(xo,yo) .

Since h ∈ (0,1) , we have p(xo,yo) = 0. So, by p(xo,xo) = 0 and by Lemma 2.1,
we have xo = yo. �	

In [89], Suzuki established the following multivalued version of the BCP with
respect to τ-distance, which is a generalization of Theorem 2.28.

Theorem 2.29. Let (X ,d) be a complete metric space and let p be a τ-distance on
X . Let T : X →Cl(X) be a mapping such that for a fixed constant h ∈ [0,1) and for
any x,y ∈ X , u ∈ T (x), there is v ∈ T (y) satisfying

p(u,v)≤ h p(x,y).

Then, T has a fixed point.

Many other fixed point results with respect to τ-distance and other generalized
distances have appeared in the literature, see, for example, [13, 25, 54–58, 89] and
the references therein.
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