Contents

1 Mathematical Preliminaries .. 1
 1.1 Sets .. 1
 1.1.1 Equivalence Relations 3
 1.2 Maps .. 4
 1.3 Metric Spaces .. 8
 1.4 Cardinality .. 10
 1.5 Mathematical Induction 12
 1.6 Problems ... 14

Part I Finite-Dimensional Vector Spaces

2 Vectors and Linear Maps .. 19
 2.1 Vector Spaces .. 19
 2.1.1 Subspaces ... 22
 2.1.2 Factor Space .. 24
 2.1.3 Direct Sums .. 25
 2.1.4 Tensor Product of Vector Spaces 28
 2.2 Inner Product .. 29
 2.2.1 Orthogonality ... 32
 2.2.2 The Gram-Schmidt Process 33
 2.2.3 The Schwarz Inequality 35
 2.2.4 Length of a Vector ... 36
 2.3 Linear Maps ... 38
 2.3.1 Kernel of a Linear Map 41
 2.3.2 Linear Isomorphism .. 43
 2.4 Complex Structures .. 45
 2.5 Linear Functionals ... 48
 2.6 Multilinear Maps .. 53
 2.6.1 Determinant of a Linear Operator 55
 2.6.2 Classical Adjoint .. 56
 2.7 Problems ... 57

3 Algebras ... 63
 3.1 From Vector Space to Algebra 63
 3.1.1 General Properties .. 64
 3.1.2 Homomorphisms ... 70
 3.2 Ideals .. 73
 3.2.1 Factor Algebras .. 77
3.3 Total Matrix Algebra 78
3.4 Derivation of an Algebra 80
3.5 Decomposition of Algebras 83
 3.5.1 The Radical 84
 3.5.2 Semi-simple Algebras 88
 3.5.3 Classification of Simple Algebras 92
3.6 Polynomial Algebra 95
3.7 Problems 97

4 Operator Algebra 101
 4.1 Algebra of End(\mathcal{V}) 101
 4.1.1 Polynomials of Operators 102
 4.1.2 Functions of Operators 104
 4.1.3 Commutators 106
 4.2 Derivatives of Operators 107
 4.3 Conjugation of Operators 113
 4.3.1 Hermitian Operators 114
 4.3.2 Unitary Operators 118
 4.4 Idempotents 119
 4.4.1 Projection Operators 120
 4.5 Representation of Algebras 125
 4.6 Problems 131

5 Matrices 137
 5.1 Representing Vectors and Operators 137
 5.2 Operations on Matrices 142
 5.3 Orthonormal Bases 146
 5.4 Change of Basis 148
 5.5 Determinant of a Matrix 151
 5.5.1 Matrix of the Classical Adjoint 152
 5.5.2 Inverse of a Matrix 155
 5.5.3 Dual Determinant Function 158
 5.6 The Trace 160
 5.7 Problems 163

6 Spectral Decomposition 169
 6.1 Invariant Subspaces 169
 6.2 Eigenvalues and Eigenvectors 172
 6.3 Upper-Triangular Representations 175
 6.4 Complex Spectral Decomposition 177
 6.4.1 Simultaneous Diagonalization 185
 6.5 Functions of Operators 188
 6.6 Real Spectral Decomposition 191
 6.6.1 The Case of Symmetric Operators 193
 6.6.2 The Case of Real Normal Operators 198
 6.7 Polar Decomposition 205
 6.8 Problems 208
Contents

Part II Infinite-Dimensional Vector Spaces

7 Hilbert Spaces .. 215
 7.1 The Question of Convergence 215
 7.2 The Space of Square-Integrable Functions 221
 7.2.1 Orthogonal Polynomials 222
 7.2.2 Orthogonal Polynomials and Least Squares 225
 7.3 Continuous Index 227
 7.4 Generalized Functions 233
 7.5 Problems 237

8 Classical Orthogonal Polynomials 241
 8.1 General Properties 241
 8.2 Classification 244
 8.3 Recurrence Relations 245
 8.4 Details of Specific Examples 248
 8.4.1 Hermite Polynomials 248
 8.4.2 Laguerre Polynomials 249
 8.4.3 Legendre Polynomials 250
 8.4.4 Other Classical Orthogonal Polynomials 252
 8.5 Expansion in Terms of Orthogonal Polynomials 254
 8.6 Generating Functions 257
 8.7 Problems 258

9 Fourier Analysis .. 265
 9.1 Fourier Series 265
 9.1.1 The Gibbs Phenomenon 273
 9.1.2 Fourier Series in Higher Dimensions 275
 9.2 Fourier Transform 276
 9.2.1 Fourier Transforms and Derivatives 284
 9.2.2 The Discrete Fourier Transform 286
 9.2.3 Fourier Transform of a Distribution 287
 9.3 Problems 288

Part III Complex Analysis

10 Complex Calculus 295
 10.1 Complex Functions 295
 10.2 Analytic Functions 297
 10.3 Conformal Maps 304
 10.4 Integration of Complex Functions 309
 10.5 Derivatives as Integrals 315
 10.6 Infinite Complex Series 319
 10.6.1 Properties of Series 319
 10.6.2 Taylor and Laurent Series 321
 10.7 Problems 330

11 Calculus of Residues 339
 11.1 Residues 339
 11.2 Classification of Isolated Singularities 342
 11.3 Evaluation of Definite Integrals 344
11.3.1 Integrals of Rational Functions 345
11.3.2 Products of Rational and Trigonometric Functions . 348
11.3.3 Functions of Trigonometric Functions 350
11.3.4 Some Other Integrals 352
11.3.5 Principal Value of an Integral 354
11.4 Problems ... 359

12 Advanced Topics 363
12.1 Meromorphic Functions 363
12.2 Multivalued Functions 365
12.2.1 Riemann Surfaces 366
12.3 Analytic Continuation 372
12.3.1 The Schwarz Reflection Principle 374
12.3.2 Dispersion Relations 376
12.4 The Gamma and Beta Functions 378
12.5 Method of Steepest Descent 382
12.6 Problems ... 388

Part IV Differential Equations

13 Separation of Variables in Spherical Coordinates 395
13.1 PDEs of Mathematical Physics 395
13.2 Separation of the Angular Part 398
13.3 Construction of Eigenvalues of \(L^2 \) 401
13.4 Eigenvectors of \(L^2 \): Spherical Harmonics 406
13.4.1 Expansion of Angular Functions 411
13.4.2 Addition Theorem for Spherical Harmonics 412
13.5 Problems ... 413

14 Second-Order Linear Differential Equations 417
14.1 General Properties of ODEs 417
14.2 Existence/Uniqueness for First-Order DEs 419
14.3 General Properties of SOLDEs 421
14.4 The Wronskian 425
14.4.1 A Second Solution to the HSOLDE 426
14.4.2 The General Solution to an ISOLDE 428
14.4.3 Separation and Comparison Theorems 430
14.5 Adjoint Differential Operators 433
14.6 Power-Series Solutions of SOLDEs 436
14.6.1 Frobenius Method of Undetermined Coefficients . 439
14.6.2 Quantum Harmonic Oscillator 444
14.7 SOLDEs with Constant Coefficients 446
14.8 The WKB Method 450
14.8.1 Classical Limit of the Schrödinger Equation 452
14.9 Problems ... 453

15 Complex Analysis of SOLDEs 459
15.1 Analytic Properties of Complex DEs 460
15.1.1 Complex FOLDEs 460
15.1.2 The Circuit Matrix 462
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2 Complex SOLDEs</td>
<td>463</td>
</tr>
<tr>
<td>15.3 Fuchsian Differential Equations</td>
<td>469</td>
</tr>
<tr>
<td>15.4 The Hypergeometric Function</td>
<td>473</td>
</tr>
<tr>
<td>15.5 Confluent Hypergeometric Functions</td>
<td>478</td>
</tr>
<tr>
<td>15.5.1 Hydrogen-Like Atoms</td>
<td>480</td>
</tr>
<tr>
<td>15.5.2 Bessel Functions</td>
<td>482</td>
</tr>
<tr>
<td>15.6 Problems</td>
<td>485</td>
</tr>
<tr>
<td>16 Integral Transforms and Differential Equations</td>
<td>493</td>
</tr>
<tr>
<td>16.1 Integral Representation of the Hypergeometric Function</td>
<td>494</td>
</tr>
<tr>
<td>16.1.1 Integral Representation of the Confluent Hypergeometric Function</td>
<td>497</td>
</tr>
<tr>
<td>16.2 Integral Representation of Bessel Functions</td>
<td>498</td>
</tr>
<tr>
<td>16.2.1 Asymptotic Behavior of Bessel Functions</td>
<td>502</td>
</tr>
<tr>
<td>16.3 Problems</td>
<td>505</td>
</tr>
<tr>
<td>Part V Operators on Hilbert Spaces</td>
<td></td>
</tr>
<tr>
<td>17 Introductory Operator Theory</td>
<td>511</td>
</tr>
<tr>
<td>17.1 From Abstract to Integral and Differential Operators</td>
<td>511</td>
</tr>
<tr>
<td>17.2 Bounded Operators in Hilbert Spaces</td>
<td>513</td>
</tr>
<tr>
<td>17.2.1 Adjoints of Bounded Operators</td>
<td>517</td>
</tr>
<tr>
<td>17.3 Spectra of Linear Operators</td>
<td>517</td>
</tr>
<tr>
<td>17.4 Compact Sets</td>
<td>519</td>
</tr>
<tr>
<td>17.4.1 Compactness and Infinite Sequences</td>
<td>521</td>
</tr>
<tr>
<td>17.5 Compact Operators</td>
<td>523</td>
</tr>
<tr>
<td>17.5.1 Spectrum of Compact Operators</td>
<td>527</td>
</tr>
<tr>
<td>17.6 Spectral Theorem for Compact Operators</td>
<td>527</td>
</tr>
<tr>
<td>17.6.1 Compact Hermitian Operator</td>
<td>529</td>
</tr>
<tr>
<td>17.6.2 Compact Normal Operator</td>
<td>531</td>
</tr>
<tr>
<td>17.7 Resolvents</td>
<td>534</td>
</tr>
<tr>
<td>17.8 Problems</td>
<td>539</td>
</tr>
<tr>
<td>18 Integral Equations</td>
<td>543</td>
</tr>
<tr>
<td>18.1 Classification</td>
<td>543</td>
</tr>
<tr>
<td>18.2 Fredholm Integral Equations</td>
<td>549</td>
</tr>
<tr>
<td>18.2.1 Hermitian Kernel</td>
<td>552</td>
</tr>
<tr>
<td>18.2.2 Degenerate Kernels</td>
<td>556</td>
</tr>
<tr>
<td>18.3 Problems</td>
<td>560</td>
</tr>
<tr>
<td>19 Sturm-Liouville Systems</td>
<td>563</td>
</tr>
<tr>
<td>19.1 Compact-Resolvent Unbounded Operators</td>
<td>563</td>
</tr>
<tr>
<td>19.2 Sturm-Liouville Systems and SOLDEs</td>
<td>569</td>
</tr>
<tr>
<td>19.3 Asymptotic Behavior</td>
<td>573</td>
</tr>
<tr>
<td>19.3.1 Large Eigenvalues</td>
<td>573</td>
</tr>
<tr>
<td>19.3.2 Large Argument</td>
<td>577</td>
</tr>
<tr>
<td>19.4 Expansions in Terms of Eigenfunctions</td>
<td>577</td>
</tr>
<tr>
<td>19.5 Separation in Cartesian Coordinates</td>
<td>579</td>
</tr>
<tr>
<td>19.5.1 Rectangular Conducting Box</td>
<td>579</td>
</tr>
<tr>
<td>19.5.2 Heat Conduction in a Rectangular Plate</td>
<td>581</td>
</tr>
</tbody>
</table>
19.5.3 Quantum Particle in a Box .. 582
19.5.4 Wave Guides .. 584
19.6 Separation in Cylindrical Coordinates 586
 19.6.1 Conducting Cylindrical Can 586
 19.6.2 Cylindrical Wave Guide 588
 19.6.3 Current Distribution in a Circular Wire 589
19.7 Separation in Spherical Coordinates 590
 19.7.1 Radial Part of Laplace’s Equation 591
 19.7.2 Helmholtz Equation in Spherical Coordinates 593
 19.7.3 Quantum Particle in a Hard Sphere 593
 19.7.4 Plane Wave Expansion 594
19.8 Problems .. 595

Part VI Green’s Functions

20 Green’s Functions in One Dimension 605
 20.1 Calculation of Some Green’s Functions 606
 20.2 Formal Considerations ... 610
 20.2.1 Second-Order Linear DOs 614
 20.2.2 Self-adjoint SOLDOs 616
 20.3 Green’s Functions for SOLDOs 617
 20.3.1 Properties of Green’s Functions 619
 20.3.2 Construction and Uniqueness of Green’s Functions 621
 20.3.3 Inhomogeneous BCs 626
 20.4 Eigenfunction Expansion 630
 20.5 Problems .. 632

21 Multidimensional Green’s Functions: Formalism 635
 21.1 Properties of Partial Differential Equations 635
 21.1.1 Characteristic Hypersurfaces 636
 21.1.2 Second-Order PDEs in m Dimensions 640
 21.2 Multidimensional GFs and Delta Functions 643
 21.2.1 Spherical Coordinates in m Dimensions 645
 21.2.2 Green’s Function for the Laplacian 647
 21.3 Formal Development .. 648
 21.3.1 General Properties 648
 21.3.2 Fundamental (Singular) Solutions 649
 21.4 Integral Equations and GFs 652
 21.5 Perturbation Theory ... 655
 21.5.1 The Nondegenerate Case 659
 21.5.2 The Degenerate Case 660
 21.6 Problems .. 661

22 Multidimensional Green’s Functions: Applications 665
 22.1 Elliptic Equations ... 665
 22.1.1 The Dirichlet Boundary Value Problem 665
 22.1.2 The Neumann Boundary Value Problem 671
 22.2 Parabolic Equations ... 673
 22.3 Hyperbolic Equations ... 678
 22.4 The Fourier Transform Technique 680
22.4.1 GF for the m-Dimensional Laplacian 681
22.4.2 GF for the m-Dimensional Helmholtz Operator ... 682
22.4.3 GF for the m-Dimensional Diffusion Operator 684
22.4.4 GF for the m-Dimensional Wave Equation 685
22.5 The Eigenfunction Expansion Technique 688
22.6 Problems .. 693

Part VII Groups and Their Representations

23 Group Theory 701
23.1 Groups .. 702
23.2 Subgroups 705
23.2.1 Direct Products 712
23.3 Group Action 713
23.4 The Symmetric Group S_n 715
23.5 Problems ... 720

24 Representation of Groups 725
24.1 Definitions and Examples 725
24.2 Irreducible Representations 728
24.3 Orthogonality Properties 732
24.4 Analysis of Representations 737
24.5 Group Algebra 740
24.5.1 Group Algebra and Representations 740
24.6 Relationship of Characters to Those of a Subgroup . 743
24.7 Irreducible Basis Functions 746
24.8 Tensor Product of Representations 750
24.8.1 Clebsch-Gordan Decomposition 753
24.8.2 Irreducible Tensor Operators 756
24.9 Problems ... 758

25 Representations of the Symmetric Group 761
25.1 Analytic Construction 761
25.2 Graphical Construction 764
25.3 Graphical Construction of Characters 767
25.4 Young Operators 771
25.5 Products of Representations of S_n 774
25.6 Problems ... 776

Part VIII Tensors and Manifolds

26 Tensors ... 781
26.1 Tensors as Multilinear Maps 782
26.2 Symmetries of Tensors 789
26.3 Exterior Algebra 794
26.3.1 Orientation 800
26.4 Symplectic Vector Spaces 801
26.5 Inner Product Revisited 804
26.5.1 Subspaces 809
26.5.2 Orthonormal Basis 812
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5.3</td>
<td>Inner Product on $\Lambda^p(V, U)$</td>
<td>819</td>
</tr>
<tr>
<td>26.6</td>
<td>The Hodge Star Operator</td>
<td>820</td>
</tr>
<tr>
<td>26.7</td>
<td>Problems</td>
<td>823</td>
</tr>
<tr>
<td>27</td>
<td>Clifford Algebras</td>
<td>829</td>
</tr>
<tr>
<td>27.1</td>
<td>Construction of Clifford Algebras</td>
<td>830</td>
</tr>
<tr>
<td>27.1.1</td>
<td>The Dirac Equation</td>
<td>832</td>
</tr>
<tr>
<td>27.2</td>
<td>General Properties of the Clifford Algebra</td>
<td>834</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Homomorphism with Other Algebras</td>
<td>837</td>
</tr>
<tr>
<td>27.2.2</td>
<td>The Canonical Element</td>
<td>838</td>
</tr>
<tr>
<td>27.2.3</td>
<td>Center and Anticenter</td>
<td>839</td>
</tr>
<tr>
<td>27.2.4</td>
<td>Isomorphisms</td>
<td>842</td>
</tr>
<tr>
<td>27.3</td>
<td>General Classification of Clifford Algebras</td>
<td>843</td>
</tr>
<tr>
<td>27.4</td>
<td>The Clifford Algebras $\mathbb{C}_\mu^\nu(\mathbb{R})$</td>
<td>846</td>
</tr>
<tr>
<td>27.4.1</td>
<td>Classification of $\mathbb{C}_0^\nu(\mathbb{R})$ and $\mathbb{C}_0^\mu(\mathbb{R})$</td>
<td>849</td>
</tr>
<tr>
<td>27.4.2</td>
<td>Classification of $\mathbb{C}_\mu^\nu(\mathbb{R})$</td>
<td>851</td>
</tr>
<tr>
<td>27.4.3</td>
<td>The Algebra $\mathbb{C}_3^1(\mathbb{R})$</td>
<td>852</td>
</tr>
<tr>
<td>27.5</td>
<td>Problems</td>
<td>856</td>
</tr>
<tr>
<td>28</td>
<td>Analysis of Tensors</td>
<td>859</td>
</tr>
<tr>
<td>28.1</td>
<td>Differentiable Manifolds</td>
<td>859</td>
</tr>
<tr>
<td>28.2</td>
<td>Curves and Tangent Vectors</td>
<td>866</td>
</tr>
<tr>
<td>28.3</td>
<td>Differential of a Map</td>
<td>872</td>
</tr>
<tr>
<td>28.4</td>
<td>Tensor Fields on Manifolds</td>
<td>876</td>
</tr>
<tr>
<td>28.4.1</td>
<td>Vector Fields</td>
<td>877</td>
</tr>
<tr>
<td>28.4.2</td>
<td>Tensor Fields</td>
<td>882</td>
</tr>
<tr>
<td>28.5</td>
<td>Exterior Calculus</td>
<td>888</td>
</tr>
<tr>
<td>28.6</td>
<td>Integration on Manifolds</td>
<td>897</td>
</tr>
<tr>
<td>28.7</td>
<td>Symplectic Geometry</td>
<td>901</td>
</tr>
<tr>
<td>28.8</td>
<td>Problems</td>
<td>909</td>
</tr>
<tr>
<td>Part IX</td>
<td>Lie Groups and Their Applications</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Lie Groups and Lie Algebras</td>
<td>915</td>
</tr>
<tr>
<td>29.1</td>
<td>Lie Groups and Their Algebras</td>
<td>915</td>
</tr>
<tr>
<td>29.1.1</td>
<td>Group Action</td>
<td>917</td>
</tr>
<tr>
<td>29.1.2</td>
<td>Lie Algebra of a Lie Group</td>
<td>920</td>
</tr>
<tr>
<td>29.1.3</td>
<td>Invariant Forms</td>
<td>927</td>
</tr>
<tr>
<td>29.1.4</td>
<td>Infinitesimal Action</td>
<td>928</td>
</tr>
<tr>
<td>29.1.5</td>
<td>Integration on Lie Groups</td>
<td>935</td>
</tr>
<tr>
<td>29.2</td>
<td>An Outline of Lie Algebra Theory</td>
<td>936</td>
</tr>
<tr>
<td>29.2.1</td>
<td>The Lie Algebras $\mathfrak{o}(p, n-p)$ and $\mathfrak{p}(p, n-p)$</td>
<td>940</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Operations on Lie Algebras</td>
<td>944</td>
</tr>
<tr>
<td>29.3</td>
<td>Problems</td>
<td>948</td>
</tr>
<tr>
<td>30</td>
<td>Representation of Lie Groups and Lie Algebras</td>
<td>953</td>
</tr>
<tr>
<td>30.1</td>
<td>Representation of Compact Lie Groups</td>
<td>953</td>
</tr>
<tr>
<td>30.2</td>
<td>Representation of the General Linear Group</td>
<td>963</td>
</tr>
<tr>
<td>30.3</td>
<td>Representation of Lie Algebras</td>
<td>966</td>
</tr>
<tr>
<td>30.3.1</td>
<td>Representation of Subgroups of $\text{GL}(V)$</td>
<td>967</td>
</tr>
</tbody>
</table>
34.3.2 Matrix Structure Group 1096
34.4 Problems ... 1097

35 Gauge Theories ... 1099
 35.1 Gauge Potentials and Fields 1099
 35.1.1 Particle Fields 1101
 35.1.2 Gauge Transformation 1102
 35.2 Gauge-Invariant Lagrangians 1105
 35.3 Construction of Gauge-Invariant Lagrangians 1107
 35.4 Local Equations 1112
 35.5 Problems .. 1115

36 Differential Geometry 1117
 36.1 Connections in a Vector Bundle 1117
 36.2 Linear Connections 1120
 36.2.1 Covariant Derivative of Tensor Fields 1123
 36.2.2 From Forms on P to Tensor Fields on M 1125
 36.2.3 Component Expressions 1128
 36.2.4 General Basis 1132
 36.3 Geodesics .. 1137
 36.3.1 Riemann Normal Coordinates 1138
 36.4 Problems .. 1140

37 Riemannian Geometry 1143
 37.1 The Metric Connection 1143
 37.1.1 Orthogonal Bases 1148
 37.2 Isometries and Killing Vector Fields 1155
 37.3 Geodesic Deviation and Curvature 1159
 37.3.1 Newtonian Gravity 1161
 37.4 General Theory of Relativity 1163
 37.4.1 Einstein’s Equation 1163
 37.4.2 Static Spherically Symmetric Solutions 1167
 37.4.3 Schwarzschild Geodesics 1169
 37.5 Problems .. 1174

References .. 1179

Index .. 1181
Mathematical Physics
A Modern Introduction to Its Foundations
Hassani, S.
2013, XXXI, 1205 p. 160 illus., Hardcover
ISBN: 978-3-319-01194-3