Contents

1 Faddeev Equation Approach for Three-Cluster Nuclear Reactions . 1
A. Deltuva, A.C. Fonseca, and R. Lazauskas
1.1 Introduction .. 1
1.2 Momentum-Space Description of Three-Particle Scattering 2
1.2.1 Alt, Grassberger, and Sandhas Equations 3
1.2.2 Inclusion of the Coulomb Interaction 5
1.2.3 Practical Realization 8
1.3 Configuration Space 11
1.3.1 Faddeev-Merkuriev Equations 11
1.3.2 Complex Scaling 13
1.4 Application to Three-Body Nuclear Reactions 15
1.4.1 Numerical Comparison of AGS and FM Methods 16
1.4.2 Comparison with Traditional Nuclear Reaction Approaches 18
1.4.3 Beyond Standard Dynamic Models 19
1.5 Summary .. 21
References .. 22

2 Electromagnetic Transitions as a Probe of Nuclear Clustering 25
David G. Jenkins
2.1 Introduction .. 25
2.2 Gamma-Ray Spectroscopy 26
2.3 Physics Examples .. 27
2.3.1 Molecular Transitions in 8Be 27
2.3.2 Alpha Clustering in 12C 29
2.3.3 E0 Transitions ... 29
2.4 12C + 12C Clustering 30
2.4.1 Searching for Transitions Within 12C + 12C Cluster Bands 30
2.4.2 Connecting Carbon-Carbon Resonances to Low-Lying States: Heavy-Ion Radiative Capture 31
2.4.3 Total Cross-Section Measurements 35
2.4.4 Strength Distribution Measurements Using DRAGON ... 36
3 “Tomography” of the Cluster Structure of Light Nuclei via Relativistic Dissociation

P.I. Zarubin

3.1 Introduction ... 51
3.2 Physics of Relativistic Nuclei 54
3.3 Dissociation of Relativistic Nuclei 60
 3.3.1 Advantages of the NTE Technique 60
 3.3.2 Coherent Dissociation of Relativistic 12C and 16O Nuclei 64
 3.3.3 Features of the Dissociation of Heavier Nuclei 65
 3.3.4 Cluster Structure of 6Li and 7Li Nuclei 67
 3.3.5 Exposure in a Mixed Beam of 6He and 3H Isotopes 69
3.4 First Exposures at the JINR Nuclotron 69
 3.4.1 Dissociation of the 10B Nucleus 69
 3.4.2 Dissociation of the 11B Nucleus 70
 3.4.3 Dissociation of the 7Be nucleus 71
3.5 Fragmentation of the 9Be Nucleus 73
3.6 Peripheral Interactions of 14N Nuclei 75
3.7 Coherent Dissociation of 8B Nuclei 76
3.8 Coherent Dissociation of 9C Nuclei 77
3.9 Coherent Dissociation of 10C and 12N Nuclei 79
 3.9.1 Exposure to a Mixed Beam of 12N, 10C and 7Be Nuclei 79
 3.9.2 Dissociation of 10C Nuclei 80
 3.9.3 Coherent Dissociation of 12N Nuclei 84
3.10 Stopped Radioactive Nuclei 85
3.11 High-Energy Frontier 87
3.12 Conclusions ... 89
References .. 92

4 From Light to Hyper-heavy Molecules and Neutron-Star Crusts in a Dynamical Mean-Field Approach ... 95

Cédric Simenel

4.1 Introduction ... 95
4.2 The Time-Dependent Hartree-Fock Theory 96
 4.2.1 The Mean-Field Approximation 96
 4.2.2 Formalism ... 97
 4.2.3 The Skyrme Energy Density Functional 98
 4.2.4 Numerical Implementation 102
 4.2.5 Beyond the TDHF Approach 103
4.3 Formation of Light Molecules 105
 4.3.1 Structures in Fusion Cross-Sections 105
4.3.2 Contact Times Around the Barrier in 12C + 16O 107
4.3.3 The $J^\pi = 36^+$ Resonance in 24Mg + 24Mg 108
4.4 α-Clustering .. 110
4.4.1 Three-α Cluster Configurations in 4He + 8Be 110
4.4.2 Survival of α-Clusters in 8He + 208Pb Near-Barrier Fusion 112
4.5 Transfer in Heavy-Ion Collisions 113
4.5.1 Particle Number Projection Technique 113
4.5.2 Sub-barrier Transfer in 16O + 208Pb 115
4.5.3 Pairing Vibrations 117
4.6 Deep-Inelastic Collisions 119
4.6.1 Fluctuations of One-Body Observables 119
4.6.2 The 40Ca + 40Ca Reaction Well Above the Barrier 120
4.7 The Quasi-fission Process 124
4.7.1 Fusion Hindrance in Heavy Systems 125
4.7.2 Effects of the Structure of the Collision Partners 127
4.8 Actinide Collisions 129
4.8.1 Role of the Initial Orientation 129
4.8.2 Lifetime and Spontaneous e^+e^- Emission 133
4.9 Dynamics of Neutron Star Crust 135
4.10 Selected Conclusions and Perspectives 138
References ... 139

5 Covalent Binding on the Femtometer Scale: Nuclear Molecules . . . 147
Wolfram von Oertzen and Matko Milin

5.1 Molecular Binding Energy Between Nuclei 147
5.1.1 Molecular Potentials Between Nuclei 149
5.1.2 The Simplest Covalent Particle Stable Molecules, $^{9−12}$Be . 150
5.1.3 The Antisymmetrized Molecular Dynamics (AMD) for the Exotic Light Nuclei .. 156
5.2 Molecular and Cluster States in Carbon Isotopes $^{12−16}$C 159
5.2.1 12C and the Second 0^+_2 State, the Hoyle State 159
5.2.2 Parity Splitting of Rotational Cluster-Bands in Carbon Isotopes 161
5.2.3 Valence Neutrons and the Structures in $^{13−14}$C 163
5.3 Intrinsically Reflection Asymmetric Molecules and Parity Doublets 166
5.4 Covalently Bound Molecular States in Oxygen Isotopes 168
5.4.1 18O: Coexistence of Shell Model States and Covalently Bound Molecules 168
5.4.2 Covalently Bound Molecular States in 16O and 20O 169
5.4.3 Moments of Inertia, Parity Splitting and Binding Energies of Rotational Bands in Oxygen Isotopes 170
5.5 Covalently Bound Molecular States in the Neon Fluorine Nuclei 173
5.5.1 20Ne .. 173
5.5.2 21Ne .. 174
5.5.3 22Ne .. 177
5.5.4 $^{21−23}$F .. 177
6 Clusterization in Ternary Fission

D.V. Kamanin and Y.V. Pyatkov

6.1 Searching for New Ternary Decays—Background and Motivation

6.2 Comparative Study of the CCT in 252Cf (sf) and 235U(n_{th}, f) Reaction

6.2.1 Experiment Ex1

6.2.2 Experiment Ex2

6.2.3 Results of Experiment Ex1, 252Cf (sf) .

6.2.4 Results of Experiment Ex2, 235U(n_{th}, f) .

6.2.5 Summary and Conclusions

6.3 CCT Modes Based on the Deformed Magic Clusters

6.4 Ternary Decays with Comparable Masses of the Fragments

6.5 CCT with Light Ion Emission

6.6 Additional Information from the Neutron Gated Data

6.6.1 Experiment Ex3

6.6.2 Experiment Ex4

6.6.3 Efficiency for the Registration of CCT Events

6.6.4 Inclusive Data for the Experiments Ex1, 3, 4

6.6.5 Results of Neutron Gated Data for the Experiments Ex3 and Ex4

6.6.6 Mass Resolution of the Set-Ups Used

6.6.7 Triple Coincidences in Ex4

6.6.8 Conclusions to Sect. 6.6

6.7 Experiments on the Heavy Ion Beams

6.7.1 Collinear Multi-Body Decays in the Reaction 238U + 4He (40 MeV)

6.7.2 CCT in 232Th + d (10 MeV) Reaction

6.8 Clustering in Binary and Ternary Fission—Comparative Analysis

6.9 Perspectives

A.1 Reliability of Linear Structures in the Scatter Plot of Fragments Masses

References
Clusters in Nuclei, Volume 3
Beck, C. (Ed.)
2014, XIV, 246 p. 167 illus., 92 illus. in color., Softcover
ISBN: 978-3-319-01076-2