Contents

1 Introduction to Nanostructures .. 1
 1.1 Historical Perspectives .. 3
 1.2 Hybridization of Carbon Nanostructures 4
 1.2.1 Nanotubes .. 7
 1.2.2 Structure of Carbon Nanotubes 8
 1.2.3 Properties of Carbon Nanotubes 10
 1.3 Need for Wave Propagation Analysis in Nanostructures 13
 1.4 Outline and Scope of the Book 15
 1.5 Summary ... 15
References .. 16

2 Introductory Concepts of Wave Propagation Analysis in Structures .. 19
 2.1 Introduction to Wave Propagation 20
 2.2 Spectral Analysis .. 21
 2.3 Wave Propagation Terminologies 21
 2.4 Spectrum and Dispersion Relations 23
 2.4.1 Second-Order PDE 24
 2.4.2 Fourth Order PDE 26
 2.5 Summary ... 29
References .. 29

3 Various Modeling Techniques for Nanostructures 31
 3.1 First-Principles Methods (Atomistic Simulations) 32
 3.1.1 Density Functional Theory 34
 3.1.2 Ab initio Pseudopotentials 35
 3.2 Molecular Dynamics .. 36
 3.2.1 Potential Functions 37
 3.3 Molecular Dynamics for Wave Propagation in CNT 38
 3.4 Molecular Dynamics Simulation for Wave Propagation in Graphene .. 41
3.5 Monte Carlo Methods
- 3.5.1 The Metropolis Algorithms
- 3.5.2 Kinetic Monte Carlo Simulations

3.6 Continuum Modeling

3.7 Methods of Multiscale Modeling

3.8 Overview on Length Scales

3.9 Nonlocal Theories in Continuum Mechanics
- 3.9.1 Strain-Gradient Elasticity
- 3.9.2 Models with Mixed Spatial-Temporal Derivatives
- 3.9.3 Integral-Type Nonlocal Elasticity

3.10 Summary

References

4 Theory of Nonlocal Elasticity
- 4.1 Need for Nonlocal Elasticity for Nanostructures
- 4.2 Introduction to Nonlocal Elasticity
- 4.3 Types of Nonlocality
 - 4.3.1 Properties of the Kernels
- 4.4 Nonlocal Constitutive Relations
 - 4.4.1 Nonlocal Constitutive Relation for 1D Problems
 - 4.4.2 Nonlocal Constitutive Relations for 2D Problems
 - 4.4.3 Nonlocal Constitutive Relations for 3D Problems
 - 4.4.4 Nonlocal Constitutive Relations for Cylindrical Shell Problems
- 4.5 Summary

References

5 Material Property and Nonlocal Scale Parameter Estimation for Carbon Nanotubes
- 5.1 Length-Dependent In-plane Stiffness of Carbon Nanotubes
 - 5.1.1 Governing Equations for SWCNT
 - 5.1.2 Solution of Governing Equations
 - 5.1.3 In-plane Stiffness Ratio Estimation
 - 5.1.4 Numerical Results and Discussion
- 5.2 Material Property Estimation: A Comparison with Nonlocal Rod Model
 - 5.2.1 Numerical Results and Discussions
- 5.3 Prediction of Nonlocal Scale Parameter: A Molecular Structural Mechanics and Nonlocal Elasticity Model
 - 5.3.1 Armchair SWCNTs
 - 5.3.2 Zigzag SWCNTs
 - 5.3.3 Chiral SWCNTs
- 5.4 Summary

References
6 Wave Propagation in 1D-Nanostructures: Nanorods

6.1 Axial Wave Propagation in NLSGM Nanorods

- **Governing Equations for NLSGM Nanorods**
- **Wave Characteristics in NLSGM Nanorods**

6.2 Axial Wave Propagation NLStGM Nanorods

- **Governing Equations for Second and Fourth-Order NLStGM Nanorods**
- **Uniqueness and Stability of Second-Order NLStGM Nanorods**
- **Wave Characteristics of Second-Order NLStGM Nanorods**
- **Wave Characteristics of Fourth-Order NLStGM Nanorods**
- **Numerical Results and Discussion**

6.3 Axial Wave Propagation in Nanorods with Lateral Inertia

- **NLSGM-Based Governing Equations for Nanorods with Lateral Inertia**
- **Wave Characteristics of Nanorods with Lateral Inertia**

6.4 Torsional Wave Propagation in NLSGM Nanoshfts

- **Numerical Results and Discussion**

6.5 Spectral Finite Element Formulation

- **Frequency Dependent Shape Functions**
- **Dynamic Stiffness Matrix**
- **Numerical Results and Discussion**

6.6 Summary

References

7 Wave Propagation in 1D-Nanostructures: Nanobeams

7.1 NLSM for Euler–Bernoulli Nanobeams

- **Wave Dispersion Characteristics**

7.2 NLSGM for Timoshenko Nanobeam

- **Wave Dispersion Characteristics**

7.3 Rotating Nanotubes: An Introduction

- **Governing Equations for Rotating Nanotube**
- **Wave Dispersion Analysis**

7.4 Fluid Carrying SWCNTs

- **Nonlocal Governing Equations of Motion**

7.5 Magnetic Field Effects on SWCNT

- **Maxwell’s Relations**
- **Nonlocal Governing Equations of Motion Including Magnetic Field Effects**

References

7.6 Surface Effects on Flexural Wave Propagation in Nanobeams
7.6.1 Governing Equation of Motion Including Surface Residual Stress
7.6.2 Wave Propagation Analysis

7.7 Summary

References

8 Wave Propagation in Multi-Walled Carbon Nanotubes
8.1 van der Waals Forces
8.2 Governing Equations for NLSGM MWCNT
8.2.1 Generalized Wave Dispersion Analysis in MWCNTs
8.2.2 Wave Dispersion in SWCNTs
8.2.3 Wave Dispersion in DWCNTs
8.2.4 Wave Dispersion in TWCNTs
8.3 Summary

References

9 Wave Propagation in Coupled 1D-Nanosystems
9.1 Governing Equations of Motion for Double Nanorod System
9.1.1 Wave Propagation Analysis in DNRS
9.2 Coupled Nano-Beam System
9.2.1 Wave Propagation in Double Euler–Bernoulli Nanobeam System
9.2.2 Wave Propagation in Coupled Timoshenko Nanobeam System
9.3 Summary

References

10 Wave Propagation in 2D-Nanostructures
10.1 Flexural Wave Propagation in Monolayer Graphene Sheets
10.1.1 Governing Equations for Graphene Structures
10.1.2 Wave Dispersion Analysis
10.2 Modeling of Graphene Layer on Silicon Substrate
10.2.1 Potential Energy, Equilibrium and Force Constants
10.3 Wave Propagation in Single Graphene Layer on Silicon Substrate
10.3.1 Wave Dispersion Analysis
10.4 Temperature Effects on Wave Propagation in Nanoplates
10.4.1 Governing Equations of Motion Including Thermal Effects
10.4.2 Thermo-Elastic Flexural Wave Dispersion Analysis

Wave Propagation in Nanostructures
Nonlocal Continuum Mechanics Formulations
Gopalakrishnan, S.; Narendra, S.
2013, XIII, 359 p. 157 illus., 147 illus. in color.,
Hardcover
ISBN: 978-3-319-01031-1