Contents

1 Nature of Earthquakes

1.1 Dynamic Earth Structure .. 1
 1.1.1 Continental Drift .. 4
 1.1.2 Theory of Global Plate Tectonics 6
1.2 Earthquake Process and Faults 14
1.3 Seismic Waves .. 17
1.4 Magnitude of an Earthquake 21
1.5 Intensity of an Earthquake 24
 1.5.1 Instrumental Intensity 24
 1.5.2 Observational Intensity 28
1.6 Effects of Earthquakes on Built Environment 34
 1.6.1 Strong Ground Shaking 34
 1.6.2 Fault Rupture .. 34
 1.6.3 Geotechnical Deformations 36

2 Seismic Hazard Assessment

2.1 Introduction ... 41
2.2 Seismicity and Earthquake Recurrence Models 42
2.3 Ground-Motion Prediction Equations
 (Attenuation Relationships) 50
2.4 Probabilistic Seismic Hazard Analysis 53
2.5 Deterministic Seismic Hazard Analysis 61
2.6 Uniform Hazard Spectrum 63
2.7 Basic Probability Concepts 63

3 Response of Simple Structures to Earthquake Ground Motions

3.1 Single Degree of Freedom Systems 75
 3.1.1 Ideal SDOF Systems: Lumped Mass and Stiffness 75
 3.1.2 Idealized SDOF Systems: Distributed
 Mass and Stiffness .. 76
3.2 Equation of Motion: Direct Equilibrium 77
3.3 Equation of Motion for Base Excitation 78
3.4 Solution of the SDOF Equation of Motion 79
 3.4.1 Free Vibration Response 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2</td>
<td>Forced Vibration Response: Harmonic Base Excitation</td>
<td>85</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Forced Vibration Response: Earthquake Excitation</td>
<td>87</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Numerical Evaluation of Dynamic Response</td>
<td>87</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Integration Algorithm</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Earthquake Response Spectra</td>
<td>93</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Pseudo Velocity and Pseudo Acceleration Response Spectrum</td>
<td>95</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Practical Implementation of Earthquake Response Spectra</td>
<td>97</td>
</tr>
<tr>
<td>3.6</td>
<td>Nonlinear SDOF Systems</td>
<td>98</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Nonlinear Force-Deformation Relations</td>
<td>98</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Relationship Between Strength and Ductility in Nonlinear SDOF Systems</td>
<td>100</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Equation of Motion of a Nonlinear SDOF System</td>
<td>102</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Numerical Evaluation of Nonlinear Dynamic Response</td>
<td>102</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Ductility and Strength Spectra for Nonlinear SDOF Systems</td>
<td>106</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Ductility Reduction Factor (R_l)</td>
<td>108</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Equal Displacement Rule</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>Earthquake Design Spectra</td>
<td>117</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>4.2</td>
<td>Linear Elastic Design Spectrum</td>
<td>118</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Elastic Design Spectrum Based on Eurocode 8</td>
<td>119</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Elastic Design Spectrum Based on NEHRP Provisions and ASCE 7 Standards</td>
<td>124</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Effect of Damping on Linear Elastic Design Spectrum</td>
<td>135</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Structure Importance Factor (I)</td>
<td>136</td>
</tr>
<tr>
<td>4.3</td>
<td>Reduction of Elastic Forces: Inelastic Design Spectrum</td>
<td>137</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Minimum Base Shear Force</td>
<td>141</td>
</tr>
<tr>
<td>5</td>
<td>Response of Building Frames to Earthquake Ground Motions</td>
<td>145</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>5.2</td>
<td>Equations of Motion Under External Forces</td>
<td>146</td>
</tr>
<tr>
<td>5.3</td>
<td>Equations of Motion Under Earthquake Base Excitation</td>
<td>147</td>
</tr>
<tr>
<td>5.4</td>
<td>Static Condensation</td>
<td>149</td>
</tr>
<tr>
<td>5.5</td>
<td>Undamped Free Vibration: Eigenvalue Analysis</td>
<td>151</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Vibration Modes and Frequencies</td>
<td>153</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Normalization of Modal Vectors</td>
<td>157</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Orthogonality of Modal Vectors</td>
<td>158</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Modal Expansion of Displacements</td>
<td>159</td>
</tr>
</tbody>
</table>
5.6 Solution of Equation of Motion Under Earthquake Excitation
5.6.1 Summary: Modal Superposition Procedure
5.6.2 Response Spectrum Analysis
5.6.3 Modal Combination Rules
5.6.4 Equivalent Static (Effective) Modal Forces
5.7 Limitations of Plane Frame (2D) Idealizations for 3D Frame Systems
5.8 Nonlinear Static (Pushover) Analysis
5.8.1 Capacity Curve for Linear Elastic Response
5.8.2 Capacity Curve for Inelastic Response
5.8.3 Target Displacement Under Design Earthquake
5.9 Seismic Response Analysis of Base Isolated Buildings
5.9.1 General Principles of Base Isolation
5.9.2 Equivalent Linear Analysis of Base Isolation Systems with Inelastic Response
5.9.3 Critical Issues in Base Isolation

6 Analysis Procedures and Seismic Design Principles for Building Structures
6.1 Introduction
6.2 Rigid Floor Diaphragms and Dynamic Degrees of Freedom in Buildings
6.3 Equations of Motion for Buildings Under Earthquake Base Excitation
6.3.1 Mass Matrix
6.3.2 Stiffness Matrix
6.4 Free Vibration (Eigenvalue) Analysis
6.4.1 The Effect of Building Symmetry on Mode Shapes
6.5 Analysis Procedures for Buildings in Seismic Codes
6.6 Modal Response Spectrum Analysis
6.6.1 Summary of Modal Response Spectrum Analysis Procedure
6.6.2 The Minimum Number of Modes
6.6.3 Accidental Eccentricity
6.7 Equivalent Static Lateral Load Procedure
6.7.1 Base Shear Force in Seismic Codes
6.7.2 Estimation of the First Mode Period T1
6.7.3 Lateral Force Distribution in Seismic Codes
6.8 Basic Design Principles and Performance Requirements for Buildings
6.9 Structural Irregularities
6.9.1 Irregularities in Plan
6.9.2 Irregularities in Elevation
6.9.3 Selection of the Analysis Procedure
6.10 Deformation Control in Seismic Codes

6.10.1 Interstory Drift Limitation

6.10.2 Second Order Effects

6.10.3 Building Separations

7 Seismic Design of Reinforced Concrete Structures

7.1 Introduction

7.2 Capacity Design Principles

7.3 Ductility in Reinforced Concrete

7.3.1 Ductility in Reinforced Concrete Materials

7.3.2 Ductility in Reinforced Concrete Members

7.4 Seismic Design of Ductile Reinforced Concrete Beams

7.4.1 Minimum Section Dimensions

7.4.2 Limitations on Tension Reinforcement

7.4.3 Minimum Compression Reinforcement

7.4.4 Minimum Lateral Reinforcement for Confinement

7.4.5 Shear Design of Beams

7.5 Seismic Design of Ductile Reinforced Concrete Columns

7.5.1 Limitation on Axial Stresses

7.5.2 Limitation on Longitudinal Reinforcement

7.5.3 Minimum Lateral Reinforcement for Confinement

7.5.4 Strong Column-Weak Beam Principle

7.5.5 Shear Design of Columns

7.5.6 Short Column Effect

7.6 Seismic Design of Beam-Column Joints in Ductile Frames

7.6.1 Design Shear Force

7.6.2 Design Shear Strength

7.7 Comparison of the Detailing Requirements of Modern and Old Seismic Codes

7.8 Seismic Design of Ductile Concrete Shear Walls

7.8.1 Seismic Design of Slender Shear Walls

7.8.2 Seismic Design of Squat Shear Walls

7.9 Capacity Design Procedure: Summary

References

Index
Basic Earthquake Engineering
From Seismology to Analysis and Design
Sucuoğlu, H.; Akkar, S.
2014, XIV, 288 p. 245 illus., 23 illus. in color., Softcover
ISBN: 978-3-319-01025-0