Dynamical systems perturbed by small random noise have received a vast attention over the last decades in many areas of science extending from physics through chemistry and biology to climatology. They typically represent a deterministic large scale phenomenon expressed in terms of an ordinary or partial differential equation which inherits the noisy residual of a rapidly fluctuating low intensity perturbation on much smaller scales. Commonly, these systems largely mimic the phenomenon’s unperturbed deterministic behavior up to a characteristic time scale. This scale is a function of the intensity of the perturbation, depends essentially on the underlying nature of the noise and, to a minor extent, on the state space geometry of the deterministic system. Beyond that scale the system exhibits noise induced excursions.

If the deterministic system has several stable equilibria to which it converges in generic relaxation times if started in their respective domains of attraction, these excursions lead to transitions between different equilibria starting from small neighborhoods of one of them. If the system is rescaled with its characteristic time scale, the quasi-deterministic waiting time for a transition from an initial equilibrium is of the order of a time unit on an exponential clock. In its characteristic time scale, the complex fluctuating perturbed system therefore behaves asymptotically as a continuous time Markov chain switching between the stable equilibria of the unperturbed system, turning them into metastable states.

In the mathematics literature such systems first appeared in the beginning of the 1970s, mainly in the context of large deviations for Gaussian perturbations. For this type of noise, characteristic time scales are of order \(\exp(V/\varepsilon^2) \), where \(\varepsilon \) is the noise intensity, and the quantity \(V \) related to the geometry of the deterministic system. The large deviations approach as well as its potential theoretic extension turned out to be very fertile, and large deviation principles describing their metastable behavior have been discovered for large classes of ordinary and partial differential equations.

For dynamical systems with non-Gaussian noise, exit and transition problems have been much less studied. The most interesting non-Gaussian noise is given by the \(\alpha \)-stable one, arising in local limit theorems for heavy-tailed random walks. The most prominent example in this class is Cauchy noise, well known to lack
first moments as well as a suitable Cameron–Martin space. Therefore for the study of the metastable behavior of dynamical systems perturbed by it, large deviation techniques may not apply. After an abstract approach via its Markov generator by Godovanchuk in 1979, Imkeller and Pavlyukevich solved the first exit problem for one-dimensional systems and described their metastable behavior in 2006. Their study is crucially based on a skilled distinction between large and small jumps of the noise and the strong Markov property of the system, which allows to compensate for the lack of moments. The precise heuristics behind this approach is explained in detail in Sect. 1.2. In strong contrast to the Gaussian case, the characteristic time scale is of order Q/ε^α, where ε is the noise intensity, α the stability index of the noise, and Q a quantity depending on the geometry of the deterministic system and the Lévy measure.

These lecture notes treat the first exit problem and metastability for a paradigm class of reaction–diffusion equations—the Chafee–Infante equations—perturbed by additive regularly varying noise in the infinite-dimensional space of weakly differentiable functions over an interval. The corresponding principal results are contained in the following theorems. Theorem 5.16 states the convergence of the rescaled first exit times from domains of attraction of equilibria to those of a reduced model in terms of exponential moments on the same probability space. Theorem 7.10 describes metastability for the system in the characteristic time scale. To our knowledge this is the first treatment of this type of problems for stochastic partial differential equations. Also the techniques used in the proofs are new to the field.

The lecture notes address graduate students and researchers in mathematics and natural scientists with a background in partial differential equations and stochastic analysis, who would like to understand in detail the rich and subtle interplay of the deterministic infinite-dimensional dynamics and the jump behavior in terms of the Lévy measure of the random perturbation.

The text is as self-contained as possible with a proof or at least a sketch of it for every proposition in all different areas involved. In particular we give an overview of the literature on the deterministic Chafee–Infante equations. We prove fine estimates on the relaxation time in Chap. 2, which do not exist in the literature so far. In the sequel we give an introduction to stochastic reaction–diffusion equations and establish all properties relevant to our purposes, in particular the existence of a global solution and the strong Markov property in Chap. 3. The mathematical core of the text is presented in Chaps. 4–7. It concludes with an additional chapter in the appendix, where we explain the climate dynamics motivation for our paradigm model.

Bruz, France
Arnaud Debussche
Potsdam, Germany
Michael Högele
Berlin, Germany
Peter Imkeller
April 2013
The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise
Debussche, A.; Högele, M.; Imkeller, P.
2013, XIV, 165 p. 9 illus., 8 illus. in color., Softcover
ISBN: 978-3-319-00827-1