Contents

1 Introduction .. 1
 1.1 Introduction 1
 1.1.1 History of Photodynamic Therapy 1
 1.1.2 Basic Principles of Photodynamic Therapy 2
 1.2 Photosensitizers of Photodynamic Therapy 6
 1.2.1 Characteristics of Ideal Photosensitizers 7
 1.2.2 First-Generation Photosensitizers 8
 1.2.3 Second-Generation Photosensitizers 10
 1.2.4 Phthalocyanine-Based Photosensitizers 13
 1.3 Toward Targeted Photodynamic Therapy 17
 1.3.1 Site-Specific Delivery of Photosensitizers 17
 1.3.2 Activatable Photosensitizers 20
 1.4 Dual Chemo- and Photodynamic Therapy 25
 1.4.1 Covalent Conjugation 25
 1.4.2 Co-encapsulation in Polymeric Micelles 27
 1.4.3 Sequential Administration 28
 1.5 Objectives of this Study 30
References ... 30

2 A Zinc(II) Phthalocyanine Conjugated with an Oxaliplatin
 Derivative for Dual Chemo- and Photodynamic Therapy ... 35
 2.1 Introduction 35
 2.2 Results and Discussion 36
 2.2.1 Molecular Design, Synthesis, and Characterization .. 36
 2.2.2 Electronic Absorption and Photophysical Properties ... 38
 2.2.3 In Vitro Photodynamic Activities 40
 2.3 Summary 47
References ... 47
3 Zinc(II) Phthalocyanine-Polyamine Conjugates as Efficient Photosensitizers for Photodynamic Therapy

3.1 Introduction .. 49
3.2 Results and Discussion .. 50
 3.2.1 Preparation and Characterization 50
 3.2.2 Electronic Absorption and Photophysical Properties ... 53
 3.2.3 In Vitro Photodynamic Activities 56
3.3 Summary .. 64
References ... 64

4 A Redox-Responsive Silicon(IV) Phthalocyanine for Targeted Photodynamic Therapy

4.1 Introduction .. 67
4.2 Results and Discussion .. 68
 4.2.1 Preparation and Characterization 68
 4.2.2 Electronic Absorption and Photophysical Properties ... 70
 4.2.3 In Vitro Photodynamic Activities 77
4.3 Summary .. 81
References ... 81

5 A Dual pH- and Redox-Responsive Phthalocyanine-Based Photosensitizer for Targeted Photodynamic Therapy

5.1 Introduction .. 83
5.2 Results and Discussion 84
 5.2.1 Molecular Design, Synthesis, and Characterization 84
 5.2.2 Electronic Absorption and Photophysical Properties ... 87
 5.2.3 pH- and Redox-Responsive Properties 92
 5.2.4 In Vitro Photodynamic Activities 99
5.3 Summary .. 103
References ... 103

6 Conclusion and Future Outlook 105

7 Experimental Section .. 107
7.1 General ... 107
 7.1.1 Materials and Methods 107
 7.1.2 Photophysical Measurements 108
 7.1.3 Cell Lines and Culture Conditions 109
 7.1.4 Photocytotoxicity Assay 109
 7.1.5 ROS Measurements 110
 7.1.6 Intracellular Fluorescence Studies 110
 7.1.7 Cellular Uptake Determined by an Extraction Method .. 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.8</td>
<td>Subcellular Localization Studies</td>
<td>111</td>
</tr>
<tr>
<td>7.1.9</td>
<td>Flow Cytometric Studies</td>
<td>111</td>
</tr>
<tr>
<td>7.2</td>
<td>Experiments Described in Chapter 2</td>
<td>112</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Synthesis</td>
<td>112</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Photocytotoxicity Assay</td>
<td>119</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Intracellular Fluorescence Studies</td>
<td>120</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Cellular Uptake Determined by an Extraction Method</td>
<td>120</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Subcellular Localization Studies</td>
<td>120</td>
</tr>
<tr>
<td>7.3</td>
<td>Experiments Described in Chapter 3</td>
<td>120</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Synthesis</td>
<td>120</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Photocytotoxicity Assay</td>
<td>131</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Effect of Spermidine on the Cellular Uptake</td>
<td>132</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Intracellular Fluorescence Studies</td>
<td>132</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Subcellular Localization Studies</td>
<td>132</td>
</tr>
<tr>
<td>7.4</td>
<td>Experiments Described in Chapter 4</td>
<td>133</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Synthesis</td>
<td>133</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Redox-Responsive Fluorescence Emission Studies</td>
<td>138</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Redox-Responsive Singlet Oxygen Generation Studies</td>
<td>139</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Photocytotoxicity Assay</td>
<td>139</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Intracellular Fluorescence Studies</td>
<td>139</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Subcellular Localization Studies</td>
<td>140</td>
</tr>
<tr>
<td>7.5</td>
<td>Experiments Described in Chapter 5</td>
<td>140</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Synthesis</td>
<td>140</td>
</tr>
<tr>
<td>7.5.2</td>
<td>pH- and Redox-Responsive Fluorescence Emission Studies</td>
<td>145</td>
</tr>
<tr>
<td>7.5.3</td>
<td>pH- and Redox-Responsive Singlet Oxygen Generation Studies</td>
<td>145</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Intracellular Fluorescence Studies</td>
<td>146</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>146</td>
</tr>
</tbody>
</table>

Appendices

147
Towards Dual and Targeted Cancer Therapy with Novel Phthalocyanine-based Photosensitizers
Lau, J.T.F.
2013, XXII, 180 p., Hardcover
ISBN: 978-3-319-00707-6