Abstract In this paper a noncooperative, two person, zero sum, stochastic differential game is formulated and solved that is described by a linear stochastic system and a quadratic cost functional for the two players. The optimal strategies for the two players are given explicitly using a relatively simple direct method. The noise process for the two player linear system can be an arbitrary square integrable stochastic process with continuous sample paths. The special case of a fractional Brownian motion noise is explicitly noted.

1 Introduction

Two person, zero sum stochastic differential games developed as a natural generalization of (one player) stochastic control problems and minimax control problems. Two person, zero-sum stochastic differential games are often used to describe some competitive economic situations (e.g. Leong and Huang 2010). Noncooperative two person zero sum stochastic differential games where the players have actions or strategies as additive terms in a linear stochastic differential equation with a Brownian motion use the solution of a Riccati equation to characterize the optimal feedback strategies of the two players. This Riccati equation is the same as the Riccati equation that is used for an optimal control for a controlled linear system with a Brownian motion and a cost functional that is the exponential of a quadratic functional in the state and the control (Duncan 2013, Jacobson 1973).
Two major methods for solving stochastic differential games are the Hamilton-
Jacobi-Isaacs (HJI) equations and the backward stochastic differential equations (e.g. Buckdahn and Li 2008; Fleming and Hernandez-Hernandez 2011). Both of these
approaches can present significant difficulties in their solutions. The HJI equation or
more simply the Isaacs equation is a pair of nonlinear second order partial differential
equations so the existence and the uniqueness of solutions is usually difficult to verify.
A backward stochastic differential equation to solve a differential game problem
usually presents significant difficulties to verify the existence and the uniqueness of
a solution because the stochastic equation is solved backward in time but a solution
is required to have a forward in time measurability.

While a basic stochastic differential game formulation occurs where the stochas-
tic system is a linear stochastic differential equation with a Brownian motion and
the cost functional is quadratic in the state and the control, empirical evidence for
many physical phenomena demonstrates that Brownian motion is not a reasonable
choice for the system noise and some other Gaussian process from the family of
fractional Brownian motions or even other processes is more appropriate. Thus it is
natural to consider these two person zero sum differential games with a linear stochas-
tic system with the Brownian motion replaced by an arbitrary fractional Brownian
motion or more generally by a square integrable process with continuous sample
paths. These problems cannot be easily addressed by a partial differential equa-
tion approach (e.g. Isaacs equation) or a backward stochastic differential equation.
The approach used in this paper which generalizes a completion of squares method
has been used to solve a linear-quadratic control problem with fractional Brownian
motion (Duncan et al. 2012) and with a general noise (Duncan and Pasik-Duncan
2010, 2011). A stochastic differential game with a scalar system having a fractional
Brownian motion with the Hurst parameter in $(\frac{1}{2}, 1)$ is solved in Bayraktar and Poor
(2005) by determining the Nash equilibrium for the game.

It is a pleasure for the author to dedicate this paper to Charles Tapiero on the
occasion of his sixtieth birthday.

2 Game Formulation and Solution

The two person stochastic differential game is described by the following linear
stochastic differential equation

\[dX(t) = AX(t)dt + BU(t)dt + CV(t)dt + FdW(t) \]
\[X(0) = X_0 \]

where $X_0 \in \mathbb{R}^n$ is not random, $X(t) \in \mathbb{R}^n$, $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$, $B \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$,
$U(t) \in \mathbb{R}^m$, $U \in \mathcal{U}$, $C \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$, $V(t) \in \mathbb{R}^p$, $V \in \mathcal{V}$, and $F \in \mathcal{L}(\mathbb{R}^q, \mathbb{R}^n)$.
The terms U and V denote the control actions of the two players. The positive
integers (m, n, p, q) are arbitrary. The process $(W(t), t \geq 0)$ is a square integrable
stochastic process with continuous sample paths that is defined on the complete probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and \((\mathcal{F}(t), t \in [0, T])\) is the filtration for \(W\). The family of admissible strategies for \(U\) is \(U\) and for \(V\) is \(V\) and they are defined as follows

\[U = \{ U : U \text{ is an } \mathbb{R}^m \text{-valued process that is progressively measurable with respect to } (\mathcal{F}(t), t \in [0, T]) \text{ such that } U \in L^2([0, T]) \text{ a.s.} \} \]

and

\[V = \{ V : V \text{ is an } \mathbb{R}^p \text{-valued process that is progressively measurable with respect to } (\mathcal{F}(t), t \in [0, T]) \text{ such that } V \in L^2([0, T]) \text{ a.s.} \} \]

The cost functional \(J\) is a quadratic functional of \(X, U,\) and \(V\) that is given by

\[
J^0(U, V) = \frac{1}{2} \left[\int_0^T \left(\langle QX(s), X(s) \rangle + \langle RU(s), U(s) \rangle \right. \\
- \langle SV(s), V(s) \rangle \big) ds + \langle MX(T), X(T) \rangle \right]
\]

(3)

\[J(U, V) = \mathbb{E}[J^0(U, V)] \]

(4)

where \(Q \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n), R \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m), S \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^p), M \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n),\) and \(Q > 0, R > 0, S > 0,\) and \(M \geq 0\) are symmetric linear transformations.

Let \(V_+\) and \(V_-\) be the upper and lower values of the stochastic differential game, that is,

\[V_+ = \sup_U \inf_V J(U, V) \]

(5)

\[V_- = \inf_V \sup_U J(U, V) \]

(6)

Restricting the control problem to the interval \([t, T]\) and letting \(x\) be the value of the state at time \(t\), an Isaacs equation can be associated with both \(V_+(t, x)\) and \(V_-(t, x)\). With the Isaacs minimax condition (Isaacs 1965) satisfied then both \(V_+\) and \(V_-\) satisfy the same equation.

The following theorem provides an explicit solution to this noncooperative two person linear quadratic game with a general noise process, \(W\). It seems that there are no other results available for these games when \(W\) is an arbitrary stochastic process with continuous sample paths.

Theorem 2.1 *The two person zero sum stochastic differential game given by (1) and (4) has optimal admissible strategies for the two players, denoted \(U^*\) and \(V^*\), given by

\[
U^*(t) = -R^{-1}(B^TP(t)X(t) + B^T \hat{\phi}(t))
\]

(7)

\[
V^*(t) = S^{-1}(C^TP(t)X(t) + C^T \hat{\phi}(t))
\]

(8)

where \((P(t), t \in [0, T])\) is the unique positive solution of the following equation
\[
- \frac{dP}{dt} = Q + PA + A^T P - P(BR^{-1}B^T - CS^{-1}C^T)P \tag{9}
\]

\[
P(T) = M \tag{10}
\]

and it is assumed that \(BR^{-1}B^T - CS^{-1}C^T > 0\) and \((\phi(t), t \in [0, T])\) is the solution of the following linear stochastic equation

\[
d\phi(t) = -[(A^T - P(t)BR^{-1}B^T + P(t)CS^{-1}C^T)\phi dt + P(t)FdW(t)] \tag{11}
\]

\[
\phi(T) = 0 \tag{12}
\]

and

\[
\hat{\phi}(t) = \mathbb{E}[\phi(t) | \mathcal{F}(t)] \tag{13}
\]

\textbf{Proof} \quad \text{Since} \quad BR^{-1}B^T - CS^{-1}C^T > 0, \text{ the Riccati Equation (9) has a unique positive solution. Let} \quad (W(t), t \in [0, T]) \quad \text{be the process} \quad W \quad \text{in (1). For each} \quad n \in \mathbb{N}, \quad \text{let} \quad T_n = \{t_j^{(n)}, j \in \{0, ..., n\}\} \quad \text{be a partition of} \quad [0, T] \quad \text{such that} \quad 0 = t_0^{(n)} < t_1^{(n)}, ..., < t_n^{(n)} = T. \quad \text{Assume that} \quad T_{n+1} \supset T_n \quad \text{for each} \quad n \in \mathbb{N} \quad \text{and that the sequence} \quad (T_n, n \in \mathbb{N}) \quad \text{becomes dense in} \quad [0, T]. \quad \text{For example the sequence} \quad (T_n, n \in \mathbb{N}) \quad \text{can be chosen as the dyadic partitions of} \quad [0, T]. \quad \text{For each} \quad n \in \mathbb{N}, \quad \text{let} \quad (W_n(t), t \in [0, T]) \quad \text{be the piecewise linear process obtained from} \quad (W(t), t \in [0, T]) \quad \text{and the partition} \quad T_n \quad \text{by linear interpolation, that is,}

\[
W_n(t) = \left[W(t_j^{(n)}) + \frac{W(t_{j+1}^{(n)}) - W(t_j^{(n)})}{t_{j+1}^{(n)} - t_j^{(n)}}(t - t_j^{(n)})\right]1\{t_j^{(n)}, t_{j+1}^{(n)}\}(t) \tag{14}
\]

The differential game problem is solved by constructing a sequence of differential games by using this sequence of piecewise linear approximations to the process \(W\) in (1) and using a completion of squares method from deterministic linear control to obtain a sequence of optimal strategies for the two players with the sequence of linear systems where the process \(W\) in (1) is replaced by the sequence of piecewise linear approximations, \((W_n, n \in \mathbb{N})\). Then it is shown that this sequence of a pair of optimal strategies has a limit that are optimal strategies for the two players with the system (1).

Initially a "nonadapted" game problem for the linear stochastic system (1) is formed with \((W(t), t \in [0, T])\) replaced by \((W_n(t), t \in [0, T])\) for each \(n \in \mathbb{N}\) given by (14) and the strategies are not required to be adapted to \((\mathcal{F}(t), t \in [0, T])\). For fixed \(n\) this new system is solved for almost all sample paths of \(W_n\) and the solution of (1) with \(W_n\) replacing \(W\) is considered as a translation of the deterministic linear system without \(W_n\).
Let \((W_n(t), t \in [0, T], n \in \mathbb{N})\) be this sequence of processes obtained by (14) that converges uniformly almost surely to \((W(t), t \in [0, T])\). Fix \(n \in \mathbb{N}\) and consider a sample path of \(W_n\). For this sample path the dependence on \(\omega \in \Omega\) is suppressed for notational convenience. Let \((X_n(t), t \in [0, T])\) be the solution of (1) with \(W\) replaced by \(W_n\), that is, \(X_n\) is the solution of

\[
\begin{align*}
 dX_n(t) &= AX_n(t)dt + BU(t)dt + CV(t)dt + dW_n(t) \\
 X_n(0) &= X_0
\end{align*}
\]

The dependence of \(X_n\) on the strategies \(U\) and \(V\) is suppressed for notational simplicity. The following approach uses completion of squares for the corresponding deterministic control problem (e.g. Yong and Zhou 1999).

Let \((P(t), t \in [0, T])\) be the positive, symmetric solution to the following Riccati equation

\[
\begin{align*}
 -\frac{dP}{dt} &= Q + PA + A^T P - P(BR^{-1}B^T - CS^{-1}C^T)P \\
 P(T) &= M
\end{align*}
\]

Recall that it is assumed that \(BR^{-1}B^T - CS^{-1}C^T > 0\).

For each \(n \in \mathbb{N}\) let \((\phi_n(t), t \in [0, T])\) be the solution of the linear (nonhomogeneous) differential equation

\[
\begin{align*}
 \frac{d\phi_n}{dt} &= -[(A^T - P(t)BR^{-1}B^T + P(t)CS^{-1}C^T)\phi_n \\
 &\quad + P(t)F \frac{dW_n}{dt}]
\end{align*}
\]

\[
\phi_n(T) = 0
\]

so that

\[
\phi_n(t) = \int_t^T \Phi_P(s, t)P(s)FdW_n(t)
\]

where

\[
\frac{d\Phi_P}{dt}(s, t) = -(A^T - P(t)BR^{-1}B^T + P(t)CS^{-1}C^T)\Phi_P(s, t)
\]

\[
\Phi_P(s, s) = I
\]

By taking the differential of the process \((\langle P(t)X_n(t), X_n(t) \rangle, t \in [0, T])\) and integrating this differential expression using the Riccati equation (9) it follows that
\begin{align}
\langle P(T), X_n(T), X_n(T) \rangle - \langle P(0)X_0, X_0 \rangle &= \int_0^T \left(\langle P(t)(BR^{-1}B^T - CS^{-1}C^T)P(t)X_n(t), X_n(t) \rangle \\
&- \langle QX_n(t), X_n(t) \rangle + 2\langle B^TP(t)X_n(t), U(t) \rangle \\
&+ 2\langle C^TP(t)X_n(t), V(t) \rangle \right) dt + 2\langle P(t)FdW_n(t), X_n(t) \rangle \\
\end{align}

Furthermore compute the differential of \((\langle \phi_n(t), X_n(t) \rangle, t \in [0, T])\) and integrate it to obtain

\begin{align}
-\langle \phi_n(0), X_0 \rangle &= \int_0^T \left(\langle (PB - 1BT - CS - 1CT)\phi_n, X_n \rangle \\
&+ \langle \phi_n, BU \rangle + \langle \phi_n, CV \rangle \right) dt \\
&- \int_0^T \langle PdW_n, X_n \rangle + \int_0^T \langle \phi_n, dW_n \rangle \\
\end{align}

Let \(J_n^0\) be the corresponding expression for \(J^0\) with \(X\) replaced by \(X_n\). It follows directly by adding the equalities (26) and (27) and using the definition of \(J_n^0\) that

\begin{align}
J_n^0(U, V) - \frac{1}{2} \langle P(0)X_0, X_0 \rangle - \langle \phi_n(0), X_0 \rangle &= \frac{1}{2} \int_0^T \left(\langle RU, U \rangle - \langle SV, V \rangle \\
&+ 2\langle PB(R^{-1}B^T - CS^{-1}C^T)PX_n, X_n \rangle \\
&+ 2\langle B^TPX_n, U \rangle + 2\langle PCV, X_n \rangle \\
&+ 2\langle PB - 1BT \phi_n, X_n \rangle - 2\langle PCS - 1CT \phi_n, X_n \rangle \\
&+ 2\langle \phi_n, BU \rangle + 2\langle \phi_n, CV \rangle dt + \langle \phi_n, dW_n \rangle \right) \\
&= \frac{1}{2} \int_0^T \left(|R^{-\frac{1}{2}}[RU + B^TPX_n + B^T\phi_n]|^2 dt \\
&- |S^\frac{1}{2}(SV - C^TPX_n - C^T\phi_n)|^2 dt \\
&- |R^\frac{1}{2}B^T\phi_n|^2 + |S^\frac{1}{2}C^T\phi_n|^2 dt \\
&+ 2 < \phi_n, dW_n > \right)
\end{align}

Since the arbitrary strategies \(U\) and \(V\) only occur in distinct quadratic terms in (28), optimal nonadapted strategies \((\tilde{U}_n^*, \tilde{V}_n^*)\) for the system \(X_n\) are the following

\begin{align}
\tilde{U}_n^*(t) &= -R^{-1}(B^TP(t)X_n(t) + B^T\phi_n(t)) \\
\tilde{V}_n^*(t) &= S^{-1}(C^TP(t)X_n(t) + C^T\phi_n(t))
\end{align}
Since the sequence of processes \((W_n(t), t \in [0, T], n \in \mathbb{N})\) converges uniformly almost surely to the process \((W(t), t \in [0, T])\), it follows that for a fixed control \(U\), the sequence of solutions of (15), \((X_n(t), t \in [0, T], n \in \mathbb{N})\), converges uniformly almost surely to the solution of (1), \((X(t), t \in [0, T])\). This uniform convergence almost surely follows directly by representing \((X_n(t), t \in [0, T])\) by the variation of parameters formula for the linear equation and performing an integration by parts as follows

\[
X_n(t) = e^{tA} X_0 + \int_0^t e^{A(t-s)} BU(s) ds + \int_0^t e^{A(t-s)} CV(s) ds + \int_0^t e^{A(t-s)} F dW_n(s) \\
= e^{tA} X_0 + \int_0^t e^{A(t-s)} BU(s) ds + \int_0^t e^{A(t-s)} CV(s) ds + FW_n(t) + e^{tA} \int_0^t A e^{-As} FW_n(s) ds
\]

From the equalities (29), (30) and (28) it follows that the optimal nonadapted strategies \(\bar{U}\) and \(\bar{V}\) are the following

\[
\bar{U}(t) = -R^{-1}(B^T P(t) X(t) + B^T \hat{\phi}(t)) \\
\bar{V}(t) = S^{-1}(C^T P(t) X(t) + C^T \hat{\phi}(t))
\]

Now consider the game problem with the original family of adapted admissible controls for \(U\) and \(V\). Let \(\phi = \hat{\phi} + \tilde{\phi}\) where

\[
\hat{\phi}(t) = \mathbb{E}[\phi(t)|\mathcal{F}(t)]
\]

From the following equality

\[
\mathbb{E} \int_0^T [R^{-\frac{1}{2}}[RU + B^T PX + B^T \hat{\phi} + B^T \tilde{\phi}]^2 \\
- |S^{\frac{1}{2}}[SV - C^T PX - C^T \hat{\phi} - C^T \tilde{\phi}]|^2] dt \\
= \mathbb{E} \int_0^T [|R^{-\frac{1}{2}}[RU + B^T PX + B^T \hat{\phi}]^2 + |R^{-\frac{1}{2}}B^T \tilde{\phi}]^2 \\
- |S^{-\frac{1}{2}}[SV - C^T PX - C^T \hat{\phi}]|^2 - |S^{-\frac{1}{2}}[C^T \hat{\phi}]^2] dt
\]

It follows that the optimal adapted strategies \(U^*\) and \(V^*\) are

\[
U^*(t) = -R^{-1}(B^T P(t) X(t) + B^T \hat{\phi}(t)) \\
V^*(t) = S^{-1}(C^T P(t) X(t) + C^T \hat{\phi}(t))
\]
From the proof of the theorem it follows that the noise can be any square integrable process with continuous sample paths.

If \(W \) is a fractional Brownian motion then the conditional expectation, \(\hat{\phi} \), can be explicitly expressed as a Wiener-type stochastic integral of \(W \) (cf. Duncan 2006) as follows

\[
E[\phi(t)|\mathcal{F}(t)] = \int_0^t u_{1/2-H}I_{t-1/2-H}(I_{T-1/2}u_{H-1/2}1_{[t,T]}\Phi_P(.,t)P)dW
\]

(38)

where \(\Phi_P \) is the fundamental solution of the Eq. (24), \(H \in (0, 1) \) is the Hurst parameter of the fractional Brownian motion and \(I^a_b \) is a fractional integral for \(a > 0 \) and a fractional derivative for \(a < 0 \) (Samko et al. 1993). The optimal cost can also be determined explicitly in terms of fractional integrals and fractional derivatives. The family of fractional Brownian motions was introduced by Kolgomorov (1940) and a statistic of these processes was introduced by Hurst (1951).

It can be verified that the relation between the Riccati equations for the linear-quadratic game with Brownian motion and the linear-exponential-quadratic control problem with Brownian motion does not extend to the corresponding problems with an arbitrary fractional Brownian motion.

References

Models and Methods in Economics and Management Science
Essays in Honor of Charles S. Tapiero
El Ouardighi, F.; Kogan, K. (Eds.)
2014, XIII, 254 p. 23 illus., 7 illus. in color., Hardcover
ISBN: 978-3-319-00668-0