Contents

Part I Wind-Induced Three-Dimensional Currents: Numerical Models and Applications

23 Barotropic Wind-Induced Motions in a Shallow Lake

- 23.1 Introduction ... 6
- 23.2 Mathematical Prerequisites 8
 - 23.2.1 Boundary Value Problem of the One-Layer Model for the Water Transport and the Free Surface Displacements 8
 - 23.2.2 The Barotropic Multi-Layer Model 11
- 23.3 The Water Transport in the Homogeneous Lake Zurich:
 - 23.3.1 West-Wind .. 16
 - 23.3.2 Wind From East, South, North and South-East 18
 - 23.3.3 Delineation of the Validity of One-Layer Models 24
- 23.4 Concluding Discussion 32

References ... 33

24 Response of a Stratified Alpine Lake to External Wind Fields: Numerical Prediction and Comparison with Field Observations

- 24.1 The Problem Setting 37
- 24.2 Governing Equations 40
 - 24.2.1 Field Equations for a Boussinesq Fluid 40
 - 24.2.2 The Hydrostatic Approximation of the Boussinesq-Type Field Equations 42
 - 24.2.3 Turbulent Closure Conditions 43
 - 24.2.4 Boundary Conditions 44
- 24.3 Approximate Treatments of the Model Equations 45
 - 24.3.1 Discretization Procedure 45
 - 24.3.2 The Baroclinic Multi-Layer Model 47
28.3 Water Level and Water Depth Measurement 245
 28.3.1 Water Level Elevation .. 245
 28.3.2 Measurement of the Water Depth 251
28.4 Optical Measurements .. 252
 28.4.1 The Optical Properties of Natural Water
 and the Distribution of the Field of Light 253
 28.4.2 Instruments for Optical Measurements 261
28.5 Measurement of Turbulence .. 267
 28.5.1 Turbulence in Lakes ... 267
 28.5.2 Instruments .. 274
References ... 280

29 Measuring Methods and Techniques 285
 29.1 Stationary Instruments ... 287
 29.1.1 Anchored Buoy Stations: Moorings 287
 29.1.2 Lake Diagnostic Systems 291
 29.1.3 Bottom Gradient Stations 292
 29.2 On-Board Methods: Towing, Profiling, Sounding 293
 29.3 Drifter-Based Measurements 298
 29.4 Sampling Method .. 301
 29.4.1 Concluding Remarks 305
References ... 306

30 Dimensional Analysis, Similitude and Model Experiments 307
 30.1 Introductory Motivation .. 311
 30.1.1 Dimensional Analysis 311
 30.1.2 Similitude and Model Experiments 313
 30.1.3 Systems of Physical Entities 315
 30.2 Theory of Dimensional Equations 317
 30.2.1 Dimensional Homogeneity 317
 30.2.2 Buckingham’s Theorem 320
 30.2.3 Two Hydraulic Examples 326
 30.3 Application to Hydrodynamic Problems 329
 30.3.1 Instability of Stratified Shear Flows 329
 30.3.2 Wave Theory in Stratified Shear Flows 335
 30.3.3 Self-Similar Structures in Turbulent Boundary
 Layers at Large Reynolds Numbers 345
 30.3.4 Dispersion of an Oil Spill on a ‘Still’
 Water Surface ... 349
 30.4 Theory of Physical Models 350
 30.4.1 Analysis of the Downscaling
 of Physical Processes 351
 30.4.2 Applications .. 357
30.5 Model Theory and Differential Equations 360
30.5.1 Navier-Stokes-Fourier-Fick Equations 360
30.5.2 Non-Dimensionalization of the NSFF Equations 366

30.6 Physical Hydrodynamic Models 370
30.6.1 Background .. 370
30.6.2 Physical Conditions for Tidal Models 371
30.6.3 Rotating Laboratory Study of Lake Constance 375

30.7 Discussion and Conclusion ... 392

References ... 394

Part III Detritus and Particle Laden Transport in Lakes

31 Prograding and Retrograding Hypo- and Hyper-Pycnal Deltaic Formations into Quiescent Ambients 401
31.1 Introduction: Estuarine Development Due to Riverine Sediment Inflow ... 404
31.1.1 Fluvio-Deltaic Sedimentation in Lakes From Rivers 404
31.1.2 Morpho-Dynamics of Hypo-, Homo- and Hyper-Pycnal Flows ... 406

31.2 Sediment Transport in the River 408

31.3 Similarity Solution for the Homogeneous Diffusion Equation ... 413
31.3.1 Bedrock-Alluvial Transition 416
31.3.2 Overtopping Failure of a Dam 420

31.4 Hypopycnal (Gilbert-Type) Deltas 421
31.4.1 The Classical Stefan Problem 425
31.4.2 Prograding Deltas .. 428
31.4.3 Fluvial ‘Grade’ in River-Lake Systems 429
31.4.4 Experimental Verification .. 437

31.5 Hyper-Pycnal Deltas .. 440
31.5.1 Foreset Diffusion Model ... 442
31.5.2 Combined Topset-Foreset Diffusion Process for Hyper-Pycnal Deltas ... 444

31.6 Laboratory Experiments .. 454
31.6.1 Progradation of Hyper-Pycnal Deltas 455
31.6.2 Reservoir Infill by Hypo- and Hyperpycnal Deltas Over Bedrock .. 459

31.7 Formation and Evolution of Tributary Dammed Lakes 464
31.7.1 Introduction ... 464
31.7.2 Theory ... 467
31.7.3 Experiments ... 472
32 Sediment Transport in Alluvial Systems 487
 32.1 Description of the Sediment Transport Model 494
 32.2 Governing Equations in Lake Domain I 498
 32.2.1 Laminar Flow 499
 32.2.2 Turbulent Motion 503
 32.2.3 Boussinesq and Shallow Water Approximations in Model 2 516
 32.2.4 Boussinesq and Hydrostatic Pressure Assumption in Model 2 524
 32.3 A Primer on Boundary and Transition Conditions 527
 32.3.1 Kinematic Surface Condition 531
 32.3.2 Dynamic Surface Jump Conditions 532
 32.3.3 Surface Balance Laws 534
 32.4 Boundary Conditions: A Simple Model of Detritus Layer 539
 32.4.1 Boundary Conditions at the Free Surface 539
 32.4.2 Boundary Conditions at the Rigid Bed 542
 32.5 Transformation of the Surface Mass Distribution into a Detritus Layer Thickness 558
 32.6 Discussion and Conclusion 560
References 577

Acronyms 581

Name Index 583

Lake Index 589

Subject Index 591
Physics of Lakes
Volume 3: Methods of Understanding Lakes as Components of the Geophysical Environment
Hutter, K.; Chubarenko, I.P.; Yongqi, W.
2014, LXVI, 605 p. 237 illus., 70 illus. in color., Hardcover
ISBN: 978-3-319-00472-3