Contents

1 Introduction ... 1
1.1 Nonlinearity in Materials .. 1
1.2 Three Fragments from the History of the Nonlinear Theory of Waves ... 3
 1.2.1 Riemann Simple Waves: Transition from Linear Plane Waves to Nonlinear Ones 4
 1.2.2 Earnshow’s Solution of the Basic Equations of Hydrodynamics: The Oldest Example of Using the Successive Approximations Method ... 9
 1.2.3 To Nonlinear Waves in Optics 11
1.3 Structure of Book .. 15
 1.3.1 Audience ... 15
 1.3.2 Five Basic Parts of the Book 16
 1.3.3 Detailed Structure of Book 16
 Exercises ... 22
References .. 22

2 Preliminary Information About Waves and Materials 25
2.1 About Waves .. 25
 2.1.1 Observations and Definitions 25
 2.1.2 Classifications of Waves 27
 2.1.3 From History of Studying the Waves 28
2.2 About Materials .. 30
 2.2.1 General Definitions and Classifications 30
 2.2.2 On Structural Mechanics of Materials 32
 2.2.3 A Few Words on Nanotechnology and Nanomechanics of Materials ... 35
 2.2.4 To Structural Nanomechanics of Composite Materials 37
 Exercises ... 39
References .. 40
3 Elastic Materials ... 45
 3.1 Basic Concepts in the Nonlinear Theory of Elasticity 45
 3.1.1 Basic Concepts: Body, Motion, Configuration, Vector of Displacements 45
 3.1.2 Basic Notions: Strain Tensors, Invariants, Christoffel Symbols ... 48
 3.1.3 Basic Notions: Forces, Moments, Stress Tensors 51
 3.1.4 Basic Notions: Balance Laws ... 53
 3.2 Nonlinear Elastic Isotropic Materials: Three Types of Elastic Materials .. 56
 3.2.1 Nonlinear Elastic Isotropic Materials: Generally Elastic Materials .. 56
 3.2.2 Nonlinear Elastic Isotropic Materials: Hypoelastic Materials .. 60
 3.2.3 Nonlinear Elastic Isotropic Materials; Hyperelastic Materials: Seth and Signorini Potentials; Treloar, Mooney, Rivlin–Saunders models; John Harmonic Material .. 61
 3.2.4 Nonlinear Elastic Isotropic Materials: Hyperelastic Materials (Cubic Potentials and Murnaghan Potential, and Its Variants) .. 65
 Exercises .. 75
 References .. 75

4 The Simplest Linear Waves in Elastic Materials 79
 4.1 Classical Linear Waves in the Theory of Elasticity 79
 4.1.1 Basic Equations: Volume and Shear Waves 79
 4.1.2 Classical Wave Equation: Basic Facts 81
 4.1.3 Classical Wave Equation: Waves as the Result of Breaking the Correctness 84
 4.1.4 Classical Wave Equation: Basic Characteristics and Terminology .. 86
 4.1.5 Classical Wave Equation: Plane Waves 90
 4.1.6 Classical Wave Equation: Cylindrical Waves 95
 4.2 Classical Linear Waves in the Theory of Elastic Mixtures 97
 4.2.1 Some Known Microstructural Theories of Materials ... 97
 4.2.2 Basic Equations: Volume and Shear Waves in Mixtures ... 107
 4.2.3 Classical Wave Equation: Plane Waves in Mixtures ... 109
 Exercises .. 116
 References .. 117
5 Nonlinear Plane Longitudinal Waves in Elastic Materials
(Murnaghan Model, Five-Constant Model) 121
5.1 Quadratically Nonlinear Elastic Plane Longitudinal Waves 122
 5.1.1 Quadratically Nonlinear Wave Equations Describing Plane Waves .. 122
 5.1.2 Method of Successive Approximations as Applied to Studying Plane Hyperelastic Harmonic Waves 124
 5.1.3 Numerical Modeling as an Addendum to the Previous Subsection .. 132
 5.1.4 Problem on Triplets of Quadratically Nonlinear Elastic Plane Polarized Waves 142
 5.1.5 Method of Slowly Varying Amplitudes as Applied to the Study of Plane Hyperelastic Harmonic Longitudinal Waves ... 147
 5.1.6 Method of Slowly Varying Amplitudes, Self-Switching of Two Longitudinal Elastic Harmonic Plane Waves 151
5.2 Cubically Nonlinear Elastic Plane Longitudinal Waves 161
 5.2.1 Basic Nonlinear Wave Equations .. 161
 5.2.2 Generation of New Harmonics by Longitudinal Plane Cubically Nonlinear Elastic Harmonic Wave (First Standard Problem) ... 164
 5.2.3 Influence of Third Harmonics Progress on Evolution of Longitudinal Plane Elastic Wave Profile 166
Exercises ... 171
References ... 172

6 Nonlinear Plane Longitudinal Waves in Elastic Materials
(John Model, Two-Constant Model and Signorini Model, Three-Constant Model) 175
6.1 Nonlinear Plane Longitudinal Elastic Harmonic Waves
 (John Model, Two-Constant Model, Geometrically Nonlinear Only Model) .. 176
 6.1.1 Quadratically Nonlinear Elastic Plane Longitudinal Waves ... 176
 6.1.2 Cubically Nonlinear Elastic Plane Longitudinal Waves .. 179
6.2 Nonlinear Plane Longitudinal Elastic Harmonic Waves
 (Signorini Model—Three-Constant Model) 182
 6.2.1 Utility of Universal Deformations in an Analysis of Signorini Nonlinear Model 182
 6.2.2 Transition from Murnaghan-Based Nonlinear Wave Equations to Signorini-Based Nonlinear Wave Equations ... 188
 6.2.3 Longitudinal Nonlinear Waves in the Signorini Model .. 194
Exercises ... 195
References ... 196
7 Nonlinear Plane Transverse Waves in Elastic Materials
(Murnaghan Model, Five-Constant Model) 199
7.1 Quadratically Nonlinear Elastic Plane Transverse Waves 199
 7.1.1 Quadratically Nonlinear Wave Equations Describing Plane Transverse Waves 199
 7.1.2 Method of Successive Approximations as Applied to Studying Plane Transverse Elastic Harmonic Waves: Second Standard Problem (First Two Approximations) . . . 200
 7.1.3 Method of Successive Approximations as Applied to Studying Plane Transverse Elastic Harmonic Waves: Third Standard Problem (First Two Approximations) . . . 202
7.2 Cubically Nonlinear Elastic Plane Transverse Waves 203
 7.2.1 Cubically Nonlinear Wave Equations 203
 7.2.2 Two Nonlinear Elastic Harmonic Plane Transverse Vertical Waves (Analysis by Method of Slowly Varying Amplitudes, Case of Two Distinguishing Waves) 204
Exercises .. 210
References .. 210

8 Nonlinear Plane Waves in Hypoelastic Materials 213
8.1 Necessary Facts from the Theory of Hypoelastic Materials 213
 8.1.1 Introduction 213
 8.1.2 Basic Notions 214
 8.1.3 Necessary Information on Elastic Plane Waves 216
8.2 Hypoelastic Materials. Linearization. Cases of Presence of Initial Stresses and Velocities 219
 8.2.1 Linearization of Constitutive Equations 219
 8.2.2 Hypoelastic Materials: Linearized Constitutive Equations (Case 1) 220
 8.2.3 Hypoelastic Materials: Linearized Constitutive Equations (Case 2) 221
8.3 Hypoelastic Materials: Plane Waves in the Presence of Initial Stresses 222
 8.3.1 Plane Waves in the Presence of Initial Stresses:
 General Approach 222
 8.3.2 Plane Waves in Presence of Initial Stresses.
 Initially Isotropic Material 227
Exercises .. 229
References .. 229

9 Nonlinear Plane Waves in Elastic Mixtures
(Elastic Composite Materials) 231
9.1 Nonlinear Wave Equations for Elastic Two-Component Mixtures (Elastic Two-Component Composite Materials) 232
9.1.1 Basic Equations for Elastic Two-Component Mixtures (Isotropic Elastic Two-Component Composite Materials) ... 232
9.1.2 Basic Equations for Elastic Two-Component Mixtures (Orthotropic Elastic Two-Component Composite Materials) ... 235

9.2 Nonlinear Longitudinal Plane Waves in Elastic Two-Component Mixtures ... 239
 9.2.1 First Standard Problem (First Two Approximations) ... 239
 9.2.2 Nonlinear Longitudinal Plane Wave: General Scheme for Determination of Critical Time and Critical Distance ... 245
 9.2.3 Nonlinear Harmonic Longitudinal Plane Wave (Mode) in Elastic Mixtures ... 249

9.3 Nonlinear Plane Polarized Waves in Elastic Mixtures: Wave Triplets ... 251
 9.3.1 Wave Triplets in Elastic Mixtures: Graphical Method of Analysis with Aim of Dispersion Curves ... 251
 9.3.2 Graphical Method of Analysis with Aim of Dispersion Curves: Two Classical Experiments on Dispersion in Elastic Mixtures ... 254
 9.3.3 Wave Triplets in Elastic Mixtures: Noncollinear Waves ... 258
 9.3.4 Interaction of Many Plane Waves in Elastic Mixtures: Method of Slowly Varying Amplitudes ... 264

9.4 Nonlinear Plane Transverse Waves in Elastic Mixtures ... 287
 9.4.1 Second Standard Problem: Two First Approximations (Interaction Between Modes) ... 287
 9.4.2 The Third Standard Problem: New Superimposed Waves ... 292

Exercises ... 299
References ... 300

10 Nonlinear Cylindrical and Torsional Waves in Hyperelastic Materials ... 303
 10.1 Nonlinear Wave Equations for Cylindrical and Torsional Waves: Four Different Configurations ... 304
 10.1.1 Four Different Configurations (States): Displacements and Strains ... 304
 10.1.2 Four Different States: Murnaghan Potential (Stresses) ... 309
 10.1.3 Four Different States: Nonlinear Wave Equations in Displacements ... 318
 10.1.4 Four Different States: Nonlinear Wave Equations in Displacements ... 321
10.2 Quadratically Nonlinear Cylindrical Waves

10.2.1 Method of Successive Approximations: First Two Approximations (First Way of Solving)

10.2.2 Method of Successive Approximations: First Two Approximations (Second Way of Solving)

10.2.3 Method of Successive Approximations: First Two Approximations (Examples of Numerical Analysis of Evolution)

10.2.4 Comparison of Some Results for Cylindrical and Plane Waves, Propagating in Materials Modeled by Murnaghan Potential

10.2.5 Cylindrical Waves Propagating in Materials Modeled by Signorini Potential

10.3 Quadratically Nonlinear Torsional Waves

10.3.1 Quadratically Nonlinear Torsional Waves in Isotropic Materials

10.3.2 Quadratically Nonlinear Torsional Waves in Transversally Isotropic Materials

Exercises

References

11 Nonlinear Rayleigh and Love Surface Waves in Elastic Materials

11.1.1 Elastic Surface Waves

11.1.2 Linear Elastic Rayleigh Surface Waves. Basic Moments

11.1.3 Nonlinear Elastic Rayleigh Surface Waves. General Information. Basic Equations

11.2 Nonlinear Elastic Rayleigh Surface Waves: Solving the Nonlinear Wave Equations, First Two Approximations

11.3 Nonlinear Elastic Rayleigh Surface Waves: Analysis of Nonlinear Boundary Conditions

11.3.1 Boundary Conditions for Cases of Small and Large Strains

11.3.2 Analysis of Boundary Conditions. New Nonlinear Rayleigh Equation

11.4.1 Linear Elastic Love Waves

11.4.2 Nonlinear Elastic Love Surface Waves: Nonlinear Wave Equations
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.3</td>
<td>Nonlinear Elastic Love Surface Waves: Solving the Nonlinear Wave Equations</td>
<td>417</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Nonlinear Elastic Love Surface Waves: Analysis of Nonlinear Boundary Conditions</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>426</td>
</tr>
<tr>
<td>12</td>
<td>Afterword</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>430</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>433</td>
</tr>
</tbody>
</table>
Nonlinear Elastic Waves in Materials
Rushchitsky, J.J.
2014, XIII, 440 p. 69 illus., Hardcover
ISBN: 978-3-319-00463-1