Contents

1 Introduction 1
 1.1 Discrete Fracture Network Modeling 3
 1.2 Review of Stimulation Models 4
References 6

2 Methodology 13
 2.1 Governing and Constitutive Equations 13
 2.2 Initial Conditions 16
 2.3 Methods of Solution 17
 2.3.1 Iterative Coupling 17
 2.3.2 Fracture Deformation: Displacement Discontinuity Method 18
 2.3.3 Stresses Induced by Normal Displacements of Closed Fractures 19
 2.3.4 Solution to the Fluid Flow and Normal Stress Equations 20
 2.3.5 Solution to the Shear Stress Equations 24
 2.3.6 Inequality Constraints on Fracture Deformations 25
 2.3.7 Changing Mechanical Boundary Conditions 27
 2.3.8 Formation of New Tensile Fractures 28
 2.3.9 Adaptive Time Stepping 29
 2.3.10 Wellbore Boundary Conditions 30
 2.4 Spatial Domain 31
 2.4.1 Generation of the Discrete Fracture Network 31
 2.4.2 Spatial Discretization 32
 2.5 Special Simulation Topics 34
 2.5.1 Efficient Matrix Multiplication 34
 2.5.2 Crack Tip Regions 34
 2.5.3 Dynamic Friction Weakening 36
 2.5.4 Alternative Method for Modeling Friction 38
 2.5.5 Adaptive Domain Adjustment 41
Discrete Fracture Network Modeling of Hydraulic Stimulation
Coupling Flow and Geomechanics
McClure, M.; Horne, R.N.
2013, X, 90 p. 42 illus., 41 illus. in color., Softcover
ISBN: 978-3-319-00382-5