Contents

1 Tradition and Innovation: The Case of the Eighteenth and Nineteenth Century Wooden Bridges .. 1
 1.1 The Beginning of a New Path.. 1
 1.1.1 The Need for a Rational Criterion......................... 2
 1.1.2 The Quest for a Proper Ratio 4
 1.2 Alphabetically Ordered Knowledge 7
 1.2.1 The Encyclopédie ou Dictionnaire Raisonné des Sciences, des Arts et des Métiers 8
 1.3 Load Bearing Capacity of a Wood Element According to Proportions .. 12
 1.4 From Beam to Arch: The École des Ponts et Chaussées Concours des Ponts ... 14
 1.5 Jean Grubenmann: A New Idea of Wooden Arch 19
 1.6 Karl Friedrick von Wiebeking: “A New Way to Build Wooden Bridges” ... 26
 References .. 30

2 Theory and Tests on Wood Elements in the Nineteenth Century in Architecture and Engineering French Treatises 33
 2.1 Wood Strength: First Tests ... 33
 2.2 The Heritage of Mathematics 34
 2.3 Theory Tested by Experience 38
 2.4 Experimental Basis of Structural Mechanics 41
 2.5 The Proposal for a Rigorous Approach 47
 2.6 Load-Based Element Dimensioning 51
 2.7 A Rigorous Scientific Formula Made Easy 54
 References .. 59

3 The Application of Structural Mechanics to Wooden Bridge Design: First Attempts .. 61
 3.1 Cost Effectiveness, Strength and Durability of Town’s System ... 61
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 The Evolution of Town’s System</td>
<td>66</td>
</tr>
<tr>
<td>3.3 First French Structural Analysis of Wooden Bridge According to</td>
<td></td>
</tr>
<tr>
<td>Navier’s Bending Theory</td>
<td>73</td>
</tr>
<tr>
<td>3.3.1 Load Bearing Capacity of a Temporary Bridge in Lyon</td>
<td>74</td>
</tr>
<tr>
<td>3.3.2 Load Bearing Capacity of a Temporary Bridge in Lozanne</td>
<td>77</td>
</tr>
<tr>
<td>3.3.3 Load Test of the Vaudreuil Bridge</td>
<td>79</td>
</tr>
<tr>
<td>References</td>
<td>83</td>
</tr>
</tbody>
</table>

Index | 85 |
Toward Structural Mechanics Through Wooden Bridges in France (1716-1841)
Tardini, C.
2014, XV, 87 p. 48 illus., Softcover
ISBN: 978-3-319-00286-6