Contents

1 Short Introduction to Stability Theory of Deterministic Functional Differential Equations ...................................... 1
  1.1 Some Peculiarities of Functional Differential Equations .......... 1
    1.1.1 Description of Functional Differential Equations .......... 1
    1.1.2 Reducing to Ordinary Differential Equations ............. 2
  1.2 Method of Steps for Retarded Functional Differential Equations .. 3
  1.3 Characteristic Equation for Differential Equation with Discrete
      Delays ........................................................................ 5
  1.4 The Influence of Small Delays on Stability ....................... 21
  1.5 Routh–Hurwitz Conditions ........................................... 25

2 Stochastic Functional Differential Equations and Procedure
   of Constructing Lyapunov Functionals ................................ 29
  2.1 Short Introduction to Stochastic Functional Differential Equations . 29
    2.1.1 Wiener Process and Its Numerical Simulation .......... 29
    2.1.2 Itô Integral, Itô Stochastic Differential Equation, and Itô
          Formula ................................................................. 31
  2.2 Stability of Stochastic Functional Differential Equations .......... 34
    2.2.1 Definitions of Stability and Basic Lyapunov-Type Theorems 34
    2.2.2 Formal Procedure of Constructing Lyapunov Functionals 39
    2.2.3 Auxiliary Lyapunov-Type Theorem ........................... 40
  2.3 Some Useful Statements ................................................. 43
    2.3.1 Linear Stochastic Differential Equation .................... 43
    2.3.2 System of Two Linear Stochastic Differential Equations .... 47
    2.3.3 Some Useful Inequalities ....................................... 50
  2.4 Some Unsolved Problems ............................................. 51
    2.4.1 Problem 1 ......................................................... 51
    2.4.2 Problem 2 ......................................................... 52

3 Stability of Linear Scalar Equations ..................................... 53
  3.1 Linear Stochastic Differential Equation of Neutral Type .......... 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>The First Way of Constructing a Lyapunov Functional</td>
<td>53</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Second Way of Constructing a Lyapunov Functional</td>
<td>56</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Some Particular Cases</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Linear Differential Equation with Two Delays in Deterministic Part</td>
<td>62</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The First Way of Constructing a Lyapunov Functional</td>
<td>62</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The Second Way of Constructing a Lyapunov Functional</td>
<td>63</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The Third Way of Constructing a Lyapunov Functional</td>
<td>64</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The Fourth Way of Constructing a Lyapunov Functional</td>
<td>65</td>
</tr>
<tr>
<td>3.2.5</td>
<td>One Generalization for Equation with ( n ) Delays</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>Linear Differential Equation of ( n )th Order</td>
<td>72</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Case ( n &gt; 1 )</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Some Particular Cases</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Nonautonomous Systems</td>
<td>85</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Equations with Variable Delays</td>
<td>85</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Equations with Variable Coefficients</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>Stability of Linear Systems of Two Equations</td>
<td>97</td>
</tr>
<tr>
<td>4.1</td>
<td>Linear Systems of Two Equations with Constant Delays</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Linear Systems of Two Equations with Distributed Delays</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>Linear Systems of Two Equations with Variable Coefficients</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>Stability of Systems with Nonlinearities</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Systems with Nonlinearities in Stochastic Part</td>
<td>113</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Scalar First-Order Differential Equation</td>
<td>113</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Scalar Second-Order Differential Equation</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>Systems with Nonlinearities in Both Deterministic and Stochastic</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Stability in Probability of Nonlinear Systems</td>
<td>126</td>
</tr>
<tr>
<td>5.4</td>
<td>Systems with Fractional Nonlinearity</td>
<td>131</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Equilibrium Points</td>
<td>132</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Stochastic Perturbations, Centering, and Linearization</td>
<td>134</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Stability of Equilibrium Points</td>
<td>135</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Numerical Analysis</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>Matrix Riccati Equations in Stability of Linear Stochastic</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Differential Equations with Delays</td>
<td>153</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Equations with Constant Delays</td>
<td>153</td>
</tr>
<tr>
<td>6.1.1.1</td>
<td>One Delay in Deterministic Part and One Delay in Stochastic Part of Equation</td>
<td>153</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Several Delays in Deterministic Part of Equation</td>
<td>157</td>
</tr>
<tr>
<td>6.2</td>
<td>Distributed Delay</td>
<td>160</td>
</tr>
<tr>
<td>6.3</td>
<td>Combination of Discrete and Distributed Delays</td>
<td>164</td>
</tr>
<tr>
<td>6.4</td>
<td>Equations with Nonincreasing Delays</td>
<td>170</td>
</tr>
<tr>
<td>6.4.1</td>
<td>One Delay in Deterministic and One Delay in Stochastic Parts of Equation</td>
<td>170</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Several Delays in Deterministic Part of Equation</td>
<td>174</td>
</tr>
</tbody>
</table>
6.5 Equations with Bounded Delays  ........................................ 179
  6.5.1 The First Way of Constructing a Lyapunov Functional  ... 179
  6.5.2 The Second Way of Constructing a Lyapunov Functional  . 180

6.6 Equations with Unbounded Delays  .................................... 182

7 Stochastic Systems with Markovian Switching  ....................... 187
  7.1 The Statement of the Problem  ...................................... 187
  7.2 Stability Theorems  .................................................. 189
  7.3 Application to Markov Chain with Two States  .................... 193
    7.3.1 The First Stability Condition  ............................... 194
    7.3.2 The Second Stability Condition  ............................. 194
  7.4 Numerical Simulation of Systems with Markovian Switching  ... 198
    7.4.1 System Without Stochastic Perturbations  .................... 199
    7.4.2 System with Stochastic Perturbations  ....................... 202
    7.4.3 System with Random Delay  .................................... 203
    7.4.4 Some Generalization of Algorithm of Markov Chain Numerical Simulation  206

8 Stabilization of the Controlled Inverted Pendulum by a Control
  with Delay  ................................................................. 209
  8.1 Linear Model of the Controlled Inverted Pendulum  ............... 209
    8.1.1 Stabilization by the Control Depending on Trajectory  ... 209
    8.1.2 Some Examples  ............................................... 214
    8.1.3 About Stabilization by the Control Depending on Velocity
         or on Acceleration  .............................................. 219
    8.1.4 Stabilization by Stochastic Perturbations  ................... 220
  8.2 Nonlinear Model of the Controlled Inverted Pendulum  ........... 222
    8.2.1 Stabilization of the Trivial Solution  ....................... 222
    8.2.2 Nonzero Steady-State Solutions  ............................. 226
    8.2.3 Stable, Unstable, and One-Sided Stable Points
         of Equilibrium  .................................................. 228
  8.3 Numerical Analysis of the Controlled Inverted Pendulum  ...... 229
    8.3.1 Stability of the Trivial Solution and Limit Cycles  ....... 229
    8.3.2 Nonzero Steady-State Solutions of the Nonlinear Model  . 234
    8.3.3 Stabilization of the Controlled Inverted Pendulum Under
         Influence of Markovian Stochastic Perturbations  .......... 240

9 Stability of Equilibrium Points of Nicholson’s Blowflies Equation
  with Stochastic Perturbations  ........................................... 251
  9.1 Introduction  ......................................................... 251
  9.2 Two Points of Equilibrium, Stochastic Perturbations, Centering,
       and Linearization  ................................................. 252
  9.3 Sufficient Conditions for Stability in Probability for Both
       Equilibrium Points  .............................................. 253
  9.4 Numerical Illustrations  ............................................. 255
10 Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator–Prey with Aftereffect and Stochastic Perturbations . . . 257
10.1 System Under Consideration ........................................ 257
10.2 Equilibrium Points, Stochastic Perturbations, Centering, and Linearization ....................................................... 260
10.2.1 Equilibrium Points .................................................. 260
10.2.2 Stochastic Perturbations and Centering .................... 261
10.2.3 Linearization ....................................................... 263
10.3 Stability of Equilibrium Point ........................................ 264
10.3.1 First Way of Constructing a Lyapunov Functional .......... 265
10.3.2 Second Way of Constructing a Lyapunov Functional ...... 272
10.3.3 Stability of the Equilibrium Point of Ratio-Dependent Predator–Prey Model .................................................. 277
11 Stability of SIR Epidemic Model Equilibrium Points ............. 283
11.1 Problem Statement .................................................... 283
11.2 Stability in Probability of the Equilibrium Point $E_0 = (b\mu_1^{-1}, 0, 0)$ 284
11.3 Stability in Probability of the Equilibrium Point $E_* = (S^*, I^*, R^*)$ 289
11.4 Numerical Simulation .................................................. 295
12 Stability of Some Social Mathematical Models with Delay Under Stochastic Perturbations ........................................ 297
12.1 Mathematical Model of Alcohol Consumption ............... 297
12.1.1 Description of the Model of Alcohol Consumption .... 297
12.1.2 Normalization of the Initial Model ......................... 299
12.1.3 Existence of an Equilibrium Point ......................... 300
12.1.4 Stochastic Perturbations, Centralization, and Linearization 301
12.1.5 Stability of the Equilibrium Point .......................... 302
12.1.6 Numerical Simulation .......................................... 309
12.2 Mathematical Model of Social Obesity Epidemic ............ 310
12.2.1 Description of the Considered Model ..................... 311
12.2.2 Existence of an Equilibrium Point .......................... 312
12.2.3 Stochastic Perturbations, Centralization, and Linearization 314
12.2.4 Stability of an Equilibrium Point .......................... 316
12.2.5 Numerical Simulation .......................................... 321
References ................................................................. 325
Index ................................................................. 339
Lyapunov Functionals and Stability of Stochastic Functional Differential Equations
Shaikhet, L.
2013, XII, 342 p., Hardcover
ISBN: 978-3-319-00100-5