Contents

1 Short Introduction to Stability Theory of Deterministic Functional Differential Equations ... 1
 1.1 Some Peculiarities of Functional Differential Equations 1
 1.1.1 Description of Functional Differential Equations 1
 1.1.2 Reducing to Ordinary Differential Equations 2
 1.2 Method of Steps for Retarded Functional Differential Equations . 3
 1.3 Characteristic Equation for Differential Equation with Discrete Delays ... 5
 1.4 The Influence of Small Delays on Stability 21
 1.5 Routh–Hurwitz Conditions .. 25

2 Stochastic Functional Differential Equations and Procedure of Constructing Lyapunov Functionals 29
 2.1 Short Introduction to Stochastic Functional Differential Equations . 29
 2.1.1 Wiener Process and Its Numerical Simulation 29
 2.1.2 Itô Integral, Itô Stochastic Differential Equation, and Itô Formula ... 31
 2.2 Stability of Stochastic Functional Differential Equations 34
 2.2.1 Definitions of Stability and Basic Lyapunov-Type Theorems 34
 2.2.2 Formal Procedure of Constructing Lyapunov Functionals . 39
 2.2.3 Auxiliary Lyapunov-Type Theorem 40
 2.3 Some Useful Statements ... 43
 2.3.1 Linear Stochastic Differential Equation 43
 2.3.2 System of Two Linear Stochastic Differential Equations .. 47
 2.3.3 Some Useful Inequalities 50
 2.4 Some Unsolved Problems ... 51
 2.4.1 Problem 1 .. 51
 2.4.2 Problem 2 .. 52

3 Stability of Linear Scalar Equations 53
 3.1 Linear Stochastic Differential Equation of Neutral Type 53
6.5 Equations with Bounded Delays .. 179
 6.5.1 The First Way of Constructing a Lyapunov Functional 179
 6.5.2 The Second Way of Constructing a Lyapunov Functional .. 180
6.6 Equations with Unbounded Delays 182

7 Stochastic Systems with Markovian Switching 187
 7.1 The Statement of the Problem 187
 7.2 Stability Theorems ... 189
 7.3 Application to Markov Chain with Two States 193
 7.3.1 The First Stability Condition 194
 7.3.2 The Second Stability Condition 194
 7.4 Numerical Simulation of Systems with Markovian Switching ... 198
 7.4.1 System Without Stochastic Perturbations 199
 7.4.2 System with Stochastic Perturbations 202
 7.4.3 System with Random Delay 203
 7.4.4 Some Generalization of Algorithm of Markov Chain
 Numerical Simulation 206

8 Stabilization of the Controlled Inverted Pendulum by a Control
with Delay ... 209
 8.1 Linear Model of the Controlled Inverted Pendulum 209
 8.1.1 Stabilization by the Control Depending on Trajectory ... 209
 8.1.2 Some Examples .. 214
 8.1.3 About Stabilization by the Control Depending on Velocity
 or on Acceleration ... 219
 8.1.4 Stabilization by Stochastic Perturbations 220
 8.2 Nonlinear Model of the Controlled Inverted Pendulum 222
 8.2.1 Stabilization of the Trivial Solution 222
 8.2.2 Nonzero Steady-State Solutions 226
 8.2.3 Stable, Unstable, and One-Sided Stable Points
 of Equilibrium ... 228
 8.3 Numerical Analysis of the Controlled Inverted Pendulum 229
 8.3.1 Stability of the Trivial Solution and Limit Cycles 229
 8.3.2 Nonzero Steady-State Solutions of the Nonlinear Model . 234
 8.3.3 Stabilization of the Controlled Inverted Pendulum Under
 Influence of Markovian Stochastic Perturbations 240

9 Stability of Equilibrium Points of Nicholson’s Blowflies Equation
with Stochastic Perturbations .. 251
 9.1 Introduction .. 251
 9.2 Two Points of Equilibrium, Stochastic Perturbations, Centering,
 and Linearization .. 252
 9.3 Sufficient Conditions for Stability in Probability for Both
 Equilibrium Points .. 253
 9.4 Numerical Illustrations ... 255
10 Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator–Prey with Aftereffect and Stochastic Perturbations . . . 257
 10.1 System Under Consideration 257
 10.2 Equilibrium Points, Stochastic Perturbations, Centering, and Linearization .. 260
 10.2.1 Equilibrium Points .. 260
 10.2.2 Stochastic Perturbations and Centering 261
 10.2.3 Linearization ... 263
 10.3 Stability of Equilibrium Point 264
 10.3.1 First Way of Constructing a Lyapunov Functional 265
 10.3.2 Second Way of Constructing a Lyapunov Functional ... 272
 10.3.3 Stability of the Equilibrium Point of Ratio-Dependent Predator–Prey Model .. 277

11 Stability of SIR Epidemic Model Equilibrium Points 283
 11.1 Problem Statement ... 283
 11.2 Stability in Probability of the Equilibrium Point $E_0 = (b\mu^{-1}, 0, 0)$.. 284
 11.3 Stability in Probability of the Equilibrium Point $E_* = (S^*, I^*, R^*)$.. 289
 11.4 Numerical Simulation ... 295

12 Stability of Some Social Mathematical Models with Delay Under Stochastic Perturbations ... 297
 12.1 Mathematical Model of Alcohol Consumption 297
 12.1.1 Description of the Model of Alcohol Consumption 297
 12.1.2 Normalization of the Initial Model 299
 12.1.3 Existence of an Equilibrium Point 300
 12.1.4 Stochastic Perturbations, Centralization, and Linearization ... 301
 12.1.5 Stability of the Equilibrium Point 302
 12.1.6 Numerical Simulation 309
 12.2 Mathematical Model of Social Obesity Epidemic 310
 12.2.1 Description of the Considered Model 311
 12.2.2 Existence of an Equilibrium Point 312
 12.2.3 Stochastic Perturbations, Centralization, and Linearization ... 314
 12.2.4 Stability of an Equilibrium Point 316
 12.2.5 Numerical Simulation 321

References .. 325
Index ... 339
Lyapunov Functionals and Stability of Stochastic Functional Differential Equations
Shaikhet, L.
2013, XII, 342 p., Hardcover
ISBN: 978-3-319-00100-5